Assistant Professor

Dr Pintu Bhunia

Department of Mathematics

Interests

  • Functional Analysis
  • Operator Theory

Education

2014

Vidyasagar University
India
BSc

2016

Vidyasagar University
India
MSc

2022

Jadavpur University
India
PhD

Experience

  • Mar 2025 - Jul 2025 – NBHM Post-Doctoral Fellow – IISc, Bangalore
  • Dec 2024 - Feb 2025 – Research Associate III (Supported by the SwarnaJayanti Fellowship of Prof. Apoorva Khare) – IISc, Bangalore
  • Dec 2022 - 06 Dec 2024 – N-PDF Post-Doctoral Fellow – IISc, Bangalore

Research Interest

  • Operator Theory and Functional Analysis
  • More precisely, several analytic and geometric properties of the numerical range; Numerical radius inequalities of bounded linear operators as well as operator matrices with several applications including quantum theory; Euclidean operator norm and Euclidean operator radius of $d$-tuple operators; Numerical index of polyhedral Banach spaces; Davis-Wielandt shell and Davis-Wielandt radius of operators; Berezin symbol and Berezin number of reproducing kernel Hilbert space operators; Schatten $p$-norm inequalities and their applications in spectral graph theory.

Awards & Fellowships

  • 2024 – NBHM Post-Doctoral Fellowship – National Board for Higher Mathematics (NBHM), Govt. of India
  • 2022 – National Post-Doctoral Fellowship (N-PDF) – Science and Engineering Research Board (SERB), Govt. of India
  • 2022 – International Travel Support (ITS) – Science and Engineering Research Board (SERB), Govt. of India
  • 2017 – Joint CSIR-UGC NET (JRF) – University Grants Commission (UGC), Govt. of India
  • 2011 – INSPIRE Scholarship – Department of Science & Technology (DST), Govt. of India

Publications

Book Publication

  • P. Bhunia, S. S. Dragomir, M. S. Moslehian, and K. Paul; Lectures on Numerical Radius Inequalities. Infosys Sci. Found. Ser. Math. Sci., Springer, Cham, 2022, XII+ 209 pp. ISBN: 978-3-031-13669-6; 978-3-031-13670-2. https://doi.org/10.1007/978-3-031-13670-2

Journal Publications

  • P. Bhunia and M. S. Moslehian; An improvement of Schr"odinger's uncertainty relation. Physics Letters A, 552 (2025), Paper No. 130663, 5 pp. https://doi.org/10.1016/j.physleta.2025.130663
  • P. Bhunia; Inequalities for linear functionals and numerical radii on $mathbf{C}^*$-algebras. Acta Mathematica Hungarica, 176 (2025) 111--138.https://doi.org/10.1007/s10474-025-01534-2
  • P. Bhunia; Norm inequalities for Hilbert space operators with applications. Linear Algebra and its Applications, 711 (2025), 40-67. https://doi.org/10.1016/j.laa.2025.02.015
  • P. Bhunia, F. Kittaneh, and S. Sahoo; Improved numerical radius bounds using the Moore-Penrose inverse. Linear Algebra and its Applications, 711 (2025), 1--16. https://doi.org/10.1016/j.laa.2025.02.013
  • P. Bhunia; Improved bounds for the numerical radius via polar decomposition of operators. Linear Algebra and its Applications, 683 (2024), 31--45.https://doi.org/10.1016/j.laa.2023.11.021
  • P. Bhunia, F. Kittaneh, K. Paul, and A. Sen; Anderson's theorem and $A$-spectral radius bounds for semi-Hilbertian space operators. Linear Algebra and its Applications, 657 (2023), 147-162. https://doi.org/10.1016/j.laa.2022.10.019
  • P. Bhunia and K. Paul; Corrigendum to "Development of inequalities and characterization of equality conditions for the numerical radius'' [Linear Algebra Appl. 630 (2021) 306–315]. Linear Algebra and its Applications, 679 (2023), 1-3.https://doi.org/10.1016/j.laa.2023.08.019
  • P. Bhunia, and K. Paul; Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra and its Applications, 630 (2021) 306-315.https://doi.org/10.1016/j.laa.2021.08.014
  • D. Sain, K. Paul, P. Bhunia, and S. Bag; On the numerical Index of polyhedral Banach Spaces. Linear Algebra and its Applications, 577 (2019) 121--133. https://doi.org/10.1016/j.laa.2019.04.024
  • P. Bhunia, S. Bag, and K. Paul; Numerical radius inequalities and its applications in estimation of zeros of polynomials. Linear Algebra and its Applications, 573 (2019) 166-177. https://doi.org/10.1016/j.laa.2019.03.017
  • P. Bhunia, S. Jana, M. S. Moslehian, and K. Paul; Improved inequalities for the numerical radius via Cartesian decomposition. Functional Analysis and Its Applications, 57 (2023), 18-28.https://doi.org/10.1134/S0016266323010021
  • P. Bhunia, and K. Paul; New upper bounds for the numerical radius of Hilbert space operators. Bulletin des Sciences Mathématiques, 167 (2021) 102959, 11 pp.https://doi.org/10.1016/j.bulsci.2021.102959
  • P. Bhunia, D. Sain, and K. Paul; On the Davis-Wielandt shell of an operator and the Davis- Wielandt index of a normed linear space. Collectanea Mathematica, 73 (2022), no. 3, 521-533. https://doi.org/10.1007/s13348-021-00332-7
  • P. Bhunia, and A. Mal; Norm inequalities in $mathcal{L(X)}$ and a geometric constant. Banach Journal of Mathematical Analysis, 18 (2024), no. 2, Paper No. 31, 19 pp.https://doi.org/10.1007/s43037-024-00342-0
  • R.K. Nayak and P. Bhunia; A new norm on the space of reproducing kernel Hilbert space operators and Berezin number inequalities. Complex Analysis and Operator Theory, (2025). https://doi.org/10.1007/s11785-025-01710-w
  • P. Bhunia, M.T. Garayev, K. Paul, and R. Tapdigoglu; Some new applications of Berezin symbols. Complex Analysis and Operator Theory, 17, no. 6, Paper No. 96, 15 pp. (2023). https://doi.org/10.1007/s11785-023-01404-1
  • P. Bhunia, K. Paul, and A. Sen; Inequalities involving Berezin norm and Berezin number. Complex Analysis and Operator Theory, 17 (2023), no. 1, Paper No. 7. 15 pp. https://doi.org/10.1007/s11785-022-01305-9
  • P. Bhunia, M. Gürdal, K. Paul, A. Sen, and R. Tapdigoglu; On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities. Numerical Functional Analysis and Optimization, 44 (2023), no. 9, 970-986. https://doi.org/10.1080/01630563.2023.2221857
  • P. Bhunia, A. Sen, S. Barik, and K. Paul; Berezin number and Berezin norm inequalities for operator matrices. Linear and Multilinear Algebra, 72 (2024), no. 16, 2749-2768. http://dx.doi.org/10.1080/03081087.2023.2299388
  • P. Bhunia and K. Paul; Some improvements of numerical radius inequalities of operators and operator matrices. Linear and Multilinear Algebra, 70 (2022), no. 10, 1995—2013. https://doi.org/10.1080/03081087.2020.1781037
  • P. Bhunia, S. Bag, and K. Paul; Numerical radius inequalities of operator matrices with applications. Linear and Multilinear Algebra, 69 (2021), no. 9, 1635-1644. https://doi.org/10.1080/03081087.2019.1634673
  • P. Bhunia, K. Paul, and R.K. Nayak; On inequalities for $A$-numerical radius of operators. Electronic Journal of Linear Algebra, 36 (2020) 143-157. https://journals.uwyo.edu/index.php/ela/article/view/5073
  • P. Bhunia, K. Paul, and R.K. Nayak; Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices. Mathematical Inequalities & Applications, 24 (2021), no. 1, 167-183. dx.doi.org/10.7153/mia-2021-24-12
  • S. Bag, P. Bhunia, and K. Paul; Bounds of numerical radius of bounded linear operator using $t$-Aluthge transform. Mathematical Inequalities & Applications, 23 (2020), 991–1004. https://doi.org/10.7153/mia-2020-23-76
  • P. Bhunia; Sharper bounds for the numerical radius of $n times n$ operator matrices. Archiv der Mathematik, 123 (2024), no. 2, 173–183. https://doi.org/10.1007/s00013-024-02017-6
  • P. Bhunia, and K. Paul; Furtherance of numerical radius inequalities of Hilbert space operators. Archiv der Mathematik, 117 (2021), no. 5, 537-546. https://doi.org/10.1007/s00013-021-01641-w
  • P. Bhunia, and S. Sahoo; Schatten $p$-norm and numerical radius inequalities with applications. Results in Mathematics, 80 (2025), no. 1, Paper No. 15. 23 pp. https://doi.org/10.1007/s00025-024-02314-0
  • P. Bhunia, and K. Paul; Proper improvement of well-known numerical radius inequalities and their applications. Results in Mathematics, 76, 177 (2021), 12 pp. https://doi.org/10.1007/s00025-021-01478-3
  • P. Bhunia, R.K. Nayak, and K. Paul; Improvement of $A$-Numerical Radius Inequalities of Semi-Hilbertian Space Operators. Results in Mathematics, 76, 120 (2021), 10 pp. https://doi.org/10.1007/s00025-021-01439-w
  • P. Bhunia, K. Paul, and A. Sen; Numerical radius inequalities of sectorial matrices. Annals of Functional Analysis, 14 (2023), no. 3, Paper No. 66, 17 pp. https://doi.org/10.1007/s43034-023-00288-8
  • D. Sain, P. Bhunia, A. Bhanja, and K. Paul; On a new norm on $B(H)$ and its application to numerical radius inequalities. Annals of Functional Analysis, 12 (2021), no. 4, Paper No. 51, 25 pp. https://doi.org/10.1007/s43034-021-00138-5
  • P. Bhunia, A. Bhanja, S. Bag, and K. Paul; Bounds for the Davis-Wielandt radius of bounded linear operators. Annals of Functional Analysis, 12 (2021) no. 1, Paper No. 18, 23 pp. https://doi.org/10.1007/s43034-020-00102-9
  • P. Bhunia, S. Bag, and K. Paul; Bounds for zeros of a polynomial using numerical radius of Hilbert space operators. Annals of Functional Analysis, 12 (2021), no. 2, Paper No. 21, 14 pp. https://doi.org/10.1007/s43034-020-00107-4
  • P. Bhunia, A. Sen, and K. Paul; Development of the Berezin number inequalities. Acta Mathematica Sinica, English Series, 39 (2023), no. 7, 1219-1228. https://doi.org/10.1007/s10114-023-2090-1
  • P. Bhunia; Numerical radius inequalities of bounded linear operators and $(alpha,beta)$-normal operators. Acta Sci. Math. (Szeged), (2024). https://doi.org/10.1007/s44146-024-00159-1
  • P. Bhunia, and K. Paul; Refinement of numerical radius inequalities of complex Hilbert space operators. Acta Sci. Math. (Szeged), 89 (2023), no. 3-4, 427-436. https://doi.org/10.1216/rmj.2025.55.323
  • P. Bhunia, S. Jana and K. Paul; Refined inequalities for the numerical radius of Hilbert space operators. Rocky Mountain Journal of Mathematics, 55 (2025), no. 2, 323-332. https://doi.org/10.1216/rmj.2025.55.323
  • A. Sen, P. Bhunia, and K. Paul; Berezin number inequalities of operators on reproducing kernel Hilbert spaces. Rocky Mountain Journal of Mathematics, 52 (2022), no. 3, 1039--1046. https://doi.org/10.1216/rmj.2022.52.1039
  • P. Bhunia, and K. Paul; Refinements of norm and numerical radius inequalities. Rocky Mountain Journal of Mathematics, 51 (2021), no. 6, 1953-1965. https://doi.org/10.1216/rmj.2021.51.1953
  • S. Jana, P. Bhunia, and K. Paul; Euclidean operator radius inequalities of a pair of bounded linear operators and their applications. Bulletin of the Brazilian Mathematical Society, New Series 54 (2023), Paper No. 1, 14 pp. https://doi.org/10.1007/s00574-022-00320-w
  • S. Jana, P. Bhunia, and K. Paul; Euclidean operator radius and numerical radius inequalities. Operators and Matrices, 18 (2024), no. 4, 925-939. https://doi.org/10.7153/oam-2024-18-56
  • M. Guesba, P. Bhunia, and K. Paul; Berezin number inequalities via positivity of $2times 2$ block matrices. Operators and Matrices, 18, (2024), no. 1, 83-95. https://doi.org/10.7153/oam-2024-18-06
  • P. Bhunia, K. Paul, and S. Barik; Further refinements of Davis-Wielandt radius inequalities. Operators and Matrices, 17 (2023), no. 3, 767-778. https://doi.org/10.7153/oam-2023-17-50
  • A. Bhanja, P. Bhunia, and K. Paul; On generalized Davis-Wielandt radius inequalities of semi-Hilbertian space operators. Operators and Matrices, 15 (2021), no. 4, 1201–1225. https://doi.org/10.7153/oam-2021-15-76
  • M. Guesba, P. Bhunia, and K. Paul; $A$-numerical radius of semi-Hilbert space operators. Journal of Convex Analysis 31 (2024), No. 1, 227--242. https://www.heldermann.de/JCA/JCA31/JCA311/jca31013.htm
  • P. Bhunia, A. Sen, and K. Paul; New semi-norm of semi-Hilbertian space operators and its application. Journal of Convex Analysis, 29 (2022), no. 4, 1149-1160. https://www.heldermann.de/JCA/JCA29/JCA294/jca29063.htm
  • D. Sain, A. Mal, P. Bhunia, and K. Paul; On numerical radius and Crawford number attainment sets of a bounded linear operator. Journal of Convex Analysis, 28 (2021), no. 1, 067-080 https://www.heldermann.de/JCA/JCA28/JCA281/jca28007.htm
  • P. Bhunia, A. Bhanja, and K. Paul; New inequalities for Davis-Wielandt radius of Hilbert space operators. Bulletin of the Malaysian Mathematical Sciences Society, 44(5) (2021) 3523--3539. https://doi.org/10.1007/s40840-021-01126-7
  • P. Bhunia, and K. Paul; Numerical radius inequalities of $2 times 2$ operator matrices. Advances in Operator Theory 8 (2023), no. 1, Paper No. 11, 17 pp. https://doi.org/10.1007/s43036-022-00237-7
  • P. Bhunia, and K. Paul; Annular bounds for the zeros of a polynomial from companion matrices. Advances in Operator Theory 7 (2022), no. 1, Paper No. 8, 19 pp. https://doi.org/10.1007/s43036-021-00174-x
  • P. Bhunia, R.K. Nayak, and K. Paul; Refinements of $A$-numerical radius inequalities and their applications. Advances in Operator Theory 5, (2020), no. 4, 1498-1511. https://doi.org/10.1007/s43036-020-00056-8
  • M. Guesba, S. Barik, P. Bhunia, and K. Paul; $A$-Davis-Wielandt radius bounds of semi-Hilbertian space operators. Bulletin of the Iranian Mathematical Society 50 (2024), no. 6, Papaer No. 82, 21pp. https://doi.org/10.1007/s41980-024-00926-4
  • P. Bhunia, K. Feki, and K. Paul; Generalized $A$-numerical radius of operators and related inequalities. Bulletin of the Iranian Mathematical Society, 48 (2022), no. 6, 3883–3907. https://doi.org/10.1007/s41980-022-00727-7
  • P. Bhunia, K. Feki, and K. Paul; $A$-numerical radius orthogonality and parallelism of semi Hilbertian space operators and their applications. Bulletin of the Iranian Mathematical Society, 47 (2021) 435–457. https://doi.org/10.1007/s41980-020-00392-8
  • P. Bhunia; Improved bounds for the numerical radius via a new norm on $ mathcal{B}(mathcal{H}) $. Georgian Mathematical Journal, (2025). https://doi.org/10.1515/gmj-2024-2084
  • P. Bhunia, S. Jana, and K. Paul; Numerical radius inequalities and estimation of zeros of polynomials. Georgian Mathematical Journal 30 (2023), no. 5, 671-682. https://doi.org/10.1515/gmj-2023-2037
  • S. Jana, P. Bhunia, and K. Paul; Euclidean operator radius inequalities of $d$-tuple operators and operator matrices. Mathematica Slovaca, 74 (2024), no. 4, 947–962. https://doi.org/10.1515/ms-2024-0070
  • P. Bhunia, K. Paul, and R.K. Nayak; Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators. Mathematica Slovaca, 72 (2022), no. 4, 969-976. https://doi.org/10.1515/ms-2022-0067
  • S. Jana, P. Bhunia, and K. Paul; Refinements of generalized Euclidean operator radius inequalities of $2$-tuple operators. Filomat, 38 (2024), no. 8, 2587—2599 https://doi.org/10.2298/FIL2408587J
  • A. Sen, P. Bhunia, and K. Paul; Bounds for the Berezin number of reproducing kernel Hilbert space operators. Filomat, 37 (2023), no. 6, 1741--1749. https://doi.org/10.2298/FIL2306741S
  • M. Guesba, P. Bhunia, and K. Paul; $A$-numerical radius inequalities and $A$-translatable radii of semi-Hilbert space operators. Filomat, 37 (2023), no. 11 3443--3456. https://doi.org/10.2298/FIL2311443G
  • P. Bhunia, K. Feki, and K. Paul; Numerical radius inequalities for products and sums of semi-Hilbertian space operators. Filomat, 36 (2022), no. 4, 1415--1431. https://doi.org/10.2298/FIL2204415B
  • A. Sen, P. Bhunia, and K. Paul, Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators. Afrika Matematika, 34 (2023), no. 3, Paper No. 44, 14 pp. https://doi.org/10.1007/s13370-023-01089-x
  • R.K. Nayak, P. Bhunia, and K. Paul; Improvements of $A$-numerical radius bounds. Hokkaido Mathematical Journal, 52 (2023), 517-544. doi:10.14492/hokmj/2022-603
  • P. Bhunia, A. Bhanja, D. Sain, and K. Paul; Numerical radius inequalities of operator matrices from a new norm on $mathcal{B}(mathcal{H})$. Miskolc Mathematical Notes, 24 (2023), No. 2, pp. 653-664. DOI: 10.18514/MMN.2023.3934
  • P. Bhunia, S. Bag, R.K. Nayak, and K. Paul; Estimations of zeros of a polynomial using numerical radius inequalities. Kyungpook Mathematical Journal, 61 (2021), 845-858. https://doi.org/10.5666/KMJ.2021.61.4.845
  • P. Bhunia, A. Sen, and K. Paul; Generalized Cartesian decomposition and numerical radius inequalities. Rendiconti del Circolo Matematico di Palermo Series 2, 73 (2024), no. 3, 887-897. https://doi.org/10.1007/s12215-023-00958-5
  • P. Bhunia, and K. Paul; $A$-numerical radius : New inequalities and characterization of equalities. Hacettepe Journal of Mathematics and Statistics, 52 (5) (2023), 1254-1262. https://doi.org/10.15672/hujms.1126384
  • P. Bhunia, S. Bag, and K. Paul; Bounds for eigenvalues of the adjacency matrix of a graph. Journal of Interdisciplinary Mathematics, 22 (2019), 415-431. https://doi.org/10.1080/09720502.2019.1630938
  • P. Bhunia, S. Jana and K. Paul; Estimates of Euclidean numerical radius for block matrices. Proceedings - Mathematical Sciences, 134 (2024), no. 2, Paper No. 20, 18 pp. https://doi.org/10.1007/s12044-024-00788-0
  • P. Bhunia, K. Paul, and A. Sen; Numerical radius inequalities for tensor product of operators. Proceedings - Mathematical Sciences, 133 (2023), no. 1, Paper No. 3. https://doi.org/10.1007/s12044-022-00722-2
  • P. Bhunia, P. Ipek Al, and Z. I. Ismailov; On the convergence of some spectral characteristics of the converging operator sequences. Proceedings - Mathematical Sciences, 134 (2024), no. 1, Paper No. 4, 15 pp. https://doi.org/10.1007/s12044-023-00770-2
  • S. Barik, P. Bhunia, and K. Paul; A notion of the Cartesian decomposition and $P$-numerical radius bounds. The Journal of Analysis, (2025). https://doi.org/10.1007/s41478-025-00938-1
  • P. Bhunia; Numerical radius and spectral radius inequalities with an estimation for roots of a polynomial. Indian Journal of Pure and Applied Mathematics, 56 (2025), no. 2, 830-840. https://doi.org/10.1007/s13226-023-00523-x
  • P. Bhunia; Numerical radius inequalities of operator matrices. Indian Journal of Pure and Applied Mathematics, (2025). https://doi.org/10.1007/s13226-025-00792-8
  • P. Bhunia; Numerical radius bounds for certain operators. Indian Journal of Pure and Applied Mathematics, (2024). https://doi.org/10.1007/s13226-024-00663-8
  • Pintu Bhunia, Sujit Sakharam Damase, and Apoorva Khare, Numerical radius and $ell_p$ operator norm of Kronecker products: inequalities and equalities. Submitted, (2025). https://doi.org/10.48550/arXiv.2501.03638

Contact Details

  • E-mail id: pintu.b@srmap.edu.in
TOP