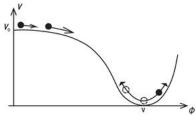
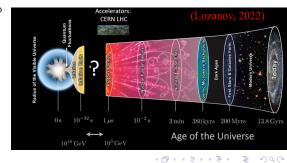
Testing Leptogenesis during reheating with primordial gravitational waves


Arindam Basu


January 23, 2025

Prologue

,

The setup

Feinmann Diagrams:

 $N \to \ell H$

Reheating+Leptogenesis

 $ightarrow \mathcal{L} \supset -\mu \, \phi \, |\varphi|^2 \, ,$ Bosonic Decay

 $ightarrow \mathcal{L} \supset -y_{\psi} \, \overline{\Psi} \, \Psi \, \phi \, ,$ Fermionic Decay

 $ightarrow {\cal L}_{\phi NN} \supset - y_{\phi NN} \, \phi \, \overline{N^c} \, N + {\sf H.c.} \, ,$

RHN Production

ightarrow The vanilla leptogenesis scenario studied with canonical seesaw framework

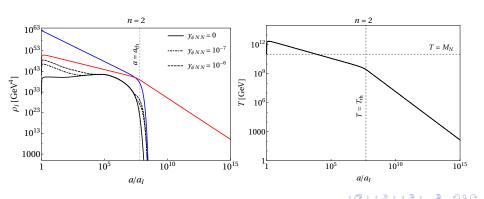
$$\left[\mathcal{L} \supset i \, \overline{N_R^c} \, \partial N_R - \left(\frac{1}{2} M_N \overline{N_R^c} N_R + \text{h.c.} \right) + \left(-y_N \, \overline{\ell_L} \, \widetilde{\mathbb{H}} \, N_R + \text{h.c.} \right) \, \right].$$

Bosonic Reheating

- •Inflation potential $V(\phi) = \lambda \frac{\phi^n}{\Lambda^{n-4}}$.
- $igoplus^n$ •The analytical solution for the Inflaton density $ho_\phi(a)\simeq
 ho_\phi(a_{rh})\left(rac{a_{rh}}{a}
 ight)^{rac{6n}{2+n}}.$

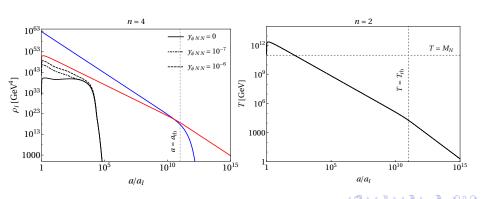
$$\underline{\phi o f \overline{f}}, \quad \rho_R(a) \simeq \frac{3 \, n}{7 - n} \, M_P^2 \, \Gamma(a_{rh}) \, H(a_{rh}) \left(\frac{a_{rh}}{a}\right)^{\frac{6(n-1)}{n+2}} \left[1 - \left(\frac{a_I}{a}\right)^{\frac{2(7-n)}{2+n}}\right]$$

$$\underline{\phi o bb}$$
, $\rho_R(a) \simeq \frac{3 n}{1+2 n} M_P^2 \Gamma(a_{rh}) H(a_{rh}) \left(\frac{a_{rh}}{a}\right)^{\frac{6}{2+n}} \left[1 - \left(\frac{a_l}{a}\right)^{\frac{2(1+2n)}{2+n}}\right]$

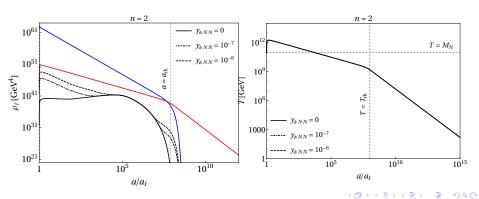

BEQs

ightarrow For exact solution to the energy densities;

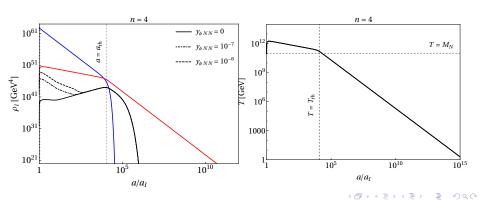
$$\dot{\rho}_{\phi} + 3H(1+w)\rho_{\phi} = -(\Gamma_{\phi \to ii} + \Gamma_{\phi \to N_{1}N_{1}})(1+w)\rho_{\phi}
\dot{\rho}_{R} + 4H\rho_{R} = \Gamma_{\phi \to ii}(1+w)\rho_{\phi} + \langle \Gamma_{N} \rangle (n_{N_{1}} - n_{N_{1}}^{\text{eq}})
\dot{n}_{N_{1}} + 3Hn_{N_{1}} = -\langle \Gamma_{N} \rangle (n_{N_{1}} - n_{N_{1}}^{\text{eq}}) + \frac{\Gamma_{\phi \to N_{1}N_{1}}}{m_{\phi}}(1+w)\rho_{\phi} + \gamma_{ii \to NN}
\dot{n}_{B-L} + 3Hn_{B-L} = -\langle \Gamma_{N} \rangle \left[\epsilon_{\Delta L} (n_{N_{1}} - n_{N_{1}}^{\text{eq}}) + \frac{n_{N_{1}}^{\text{eq}}}{2n_{\ell}^{\text{eq}}} n_{B-L} \right]
3H^{2}M_{P}^{2} = \rho_{\phi} + \rho_{R} + n_{N_{1}}E_{N}
E_{N}^{2} = M_{N}^{2} + \left(\frac{m_{\phi}(a)}{2} \frac{a_{l}}{a} \right)^{2} .$$
(1)
$$\frac{dn_{dm}}{dt} + 3Hn_{dm} = \gamma, \quad \gamma = \frac{T_{N+6}^{k+6}}{\Lambda_{N+2}^{k+2}}$$



T(a)	n=2	n = 4	n = 6
Fermionic	$a^{-3/8}$	$a^{-3/4}$	$a^{-15/16}$
Bosonic	$a^{-3/8}$	$a^{-1/4}$	$a^{-3/16}$



T(a)	n = 2	n = 4	n = 6
Fermionic	$a^{-3/8}$	$a^{-3/4}$	$a^{-15/16}$
Bosonic	$a^{-3/8}$	$a^{-1/4}$	$a^{-3/16}$



T(a)	n = 2	n = 4	n = 6	
Fermionic	$a^{-3/8}$	$a^{-3/4}$	$a^{-15/16}$	
Bosonic	$(a^{-3/8})$	$a^{-1/4}$	$a^{-3/16}$	

T(a)	n = 2	n = 4	n = 6
Fermionic	$a^{-3/8}$	$a^{-3/4}$	$a^{-15/16}$
Bosonic	$a^{-3/8}$	$(a^{-1/4})$	$a^{-3/16}$

Inflaton Dynamics During Reheating: <u>Discussion</u>

$$ightarrow$$
 For $n > 2$ case $m_{\phi}(n > 2) = f(a)$. $ightharpoonup a_{\star} = a_{I} \left(\frac{M_{N}}{2 \, m_{I}} \right)^{\frac{n+2}{3(2-n)}}$

$$\hookrightarrow$$
 For $a>a_{\star}$, $m_{\phi}<2M_{N}$

$$\hookrightarrow \phi \to \textit{NN}$$
 process kinematically

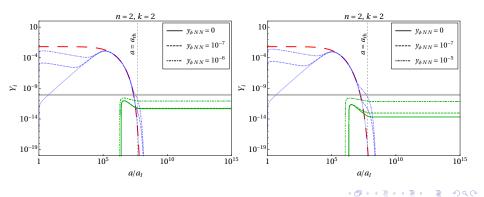
→ A → NN process kinematics

ightarrow $T_{\it rh}$ \geq 4 MeV from CMB measurements

 \hookrightarrow Sets the lower bound on the couplings

$$\hookrightarrow y_{\it eff} \geq 10^{-7}$$
 and $\mu_{\it eff} \geq 10^{7}$ GeV.

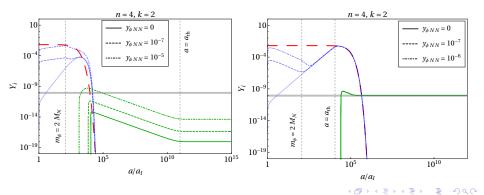
forbidden.


Comparing
$$\Gamma_{\phi \to f \bar{f}}$$
 and $\Gamma_{\phi \to \varphi \varphi}$ with $\Gamma_{\phi \to NN}$,
$$\hookrightarrow y_{\phi NN} > \begin{cases} \mu / \sqrt{m_{\phi} \ M_N} & \text{bosonic reheating} \\ y \sqrt{m_{\phi} / M_N} & \text{fermionic reheating} \end{cases}$$

Yield

• Comoving density, $Y(T) \equiv n(T)/s(T)$.

 $s(T) = rac{2\pi^2}{45} \, g_{*s}(T) \, T^3 o {
m SM}$ entropy density $g_{*s}(T) o {
m number}$ of relativistic d.o.f



Yield

• Comoving density, $Y(T) \equiv n(T)/s(T)$.

 $s(T) = \frac{2\pi^2}{45} g_{*s}(T) T^3 \to {\sf SM}$ entropy density $g_{*s}(T) \to {\sf number}$ of relativistic d.o.f

Yield: Discussion

 \rightarrow For fermionic reheating,

ightarrow For bosonic reheating,

 \hookrightarrow n=2 case,

8,

radiation domination :: n > 2 case.

⇔ asymmetry produced

during reheating.

 \hookrightarrow $\Gamma_{\phi \to NN}$ is completed before Reheating :: n=2 case. \hookrightarrow Reheating ends earlier \to asymmetry produced during

 \rightarrow For n=2 case, (for both)

 $\hookrightarrow \phi \to \mathit{NN}$ decays contributes to RHN production

 \hookrightarrow larger $y_{\phi NN} \rightarrow$ larger assymetry.

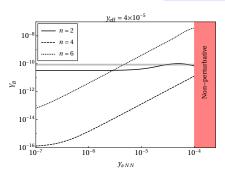
 \rightarrow For n > 2 case,

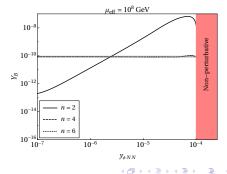
 \rightarrow For n > 2 case,

 \hookrightarrow The assymetry produced during reheating.

 \hookrightarrow The asymmetry produced during radiation domination.

▲御▶▲重▶▲重▶ 重 めの@

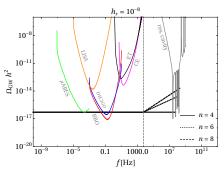

Baryon Assymetry:

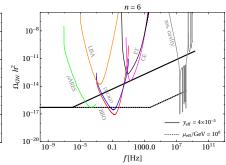

 \rightarrow n=2 case, (for both)

 \hookrightarrow reheating scenarios are identical.

 \rightarrow For n > 2 case,

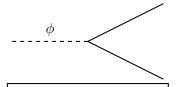
 \hookrightarrow The asymmetry produced during radiation domination. \hookrightarrow Y_B approximately independent of $y_{\phi NN}$

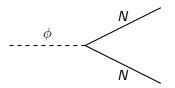


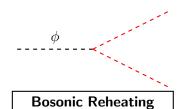


PGW

$$\Omega_{gw}(f) \simeq \Omega_{\gamma}^{(0)} \frac{\mathcal{P}_{T,\text{prim}}}{24} \frac{\left(T_{\text{hc}}\right)}{2} \left(\frac{g_{*s}(T_0)}{g_{*s}(T_{\text{hc}})}\right)^{\frac{4}{3}} \times \begin{cases} \frac{g_s(T_{rh})}{g_s(T_{\text{hc}})} \left(\frac{g_{*s}(T_{\text{hc}})}{g_{*s}(T_{rh})}\right)^{\frac{4}{3}} \left(\frac{f}{f_{rh}}\right)^{\frac{n-4}{n-1}} & \text{for } f_{rh} \leq f < f_{\text{max}} \,, \\ 1 & \text{for } f_{\text{eq}} \leq f \leq f_{rh} \,, \end{cases}$$




Conclusion:



Feinmann Diagrams:

Fermionic Reheating

$$N \rightarrow \ell H$$

Reheating+Leptogenesis

