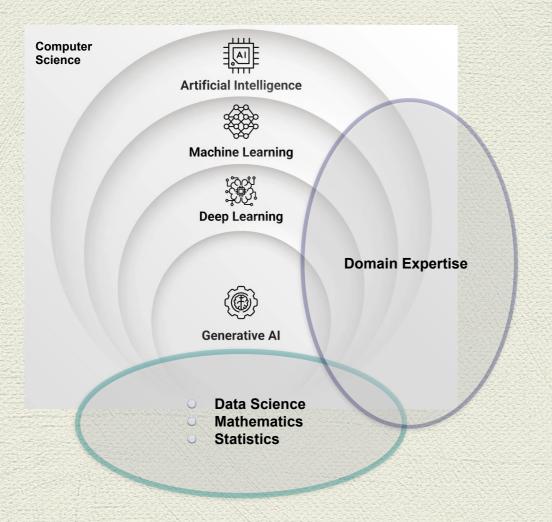
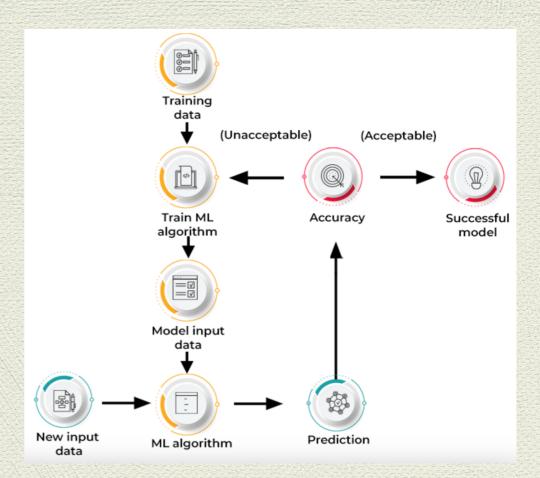


FROM BIG BANG TO NOW: A THEORY-EXPERIMENT DIALOGUE

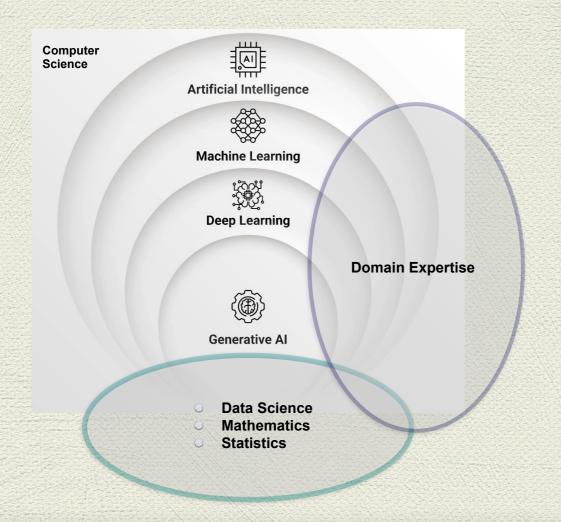
January 23 - 25, 2025

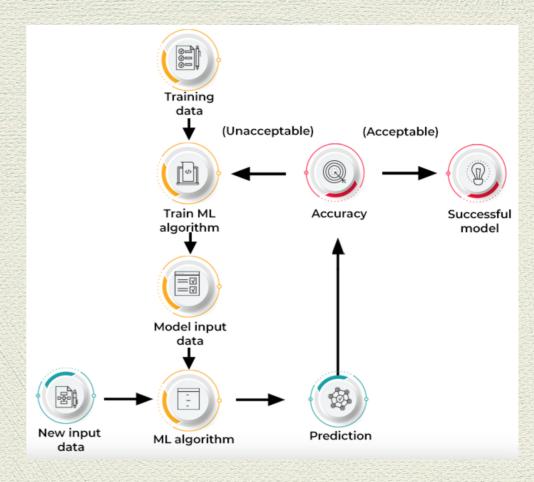
How ML works?





How ML works?





- Decision boundary: surface that divides multi-dim feature space into distinct groups of data points.
- Training: ML algorithm discovers the decision boundary
- Testing: Then uses to forecast the class of unseen data points.
- Key drivers for its growth
 - Data, Algorithms & Hardware (graphics processing unit or GPU)

Three Ways to Learn

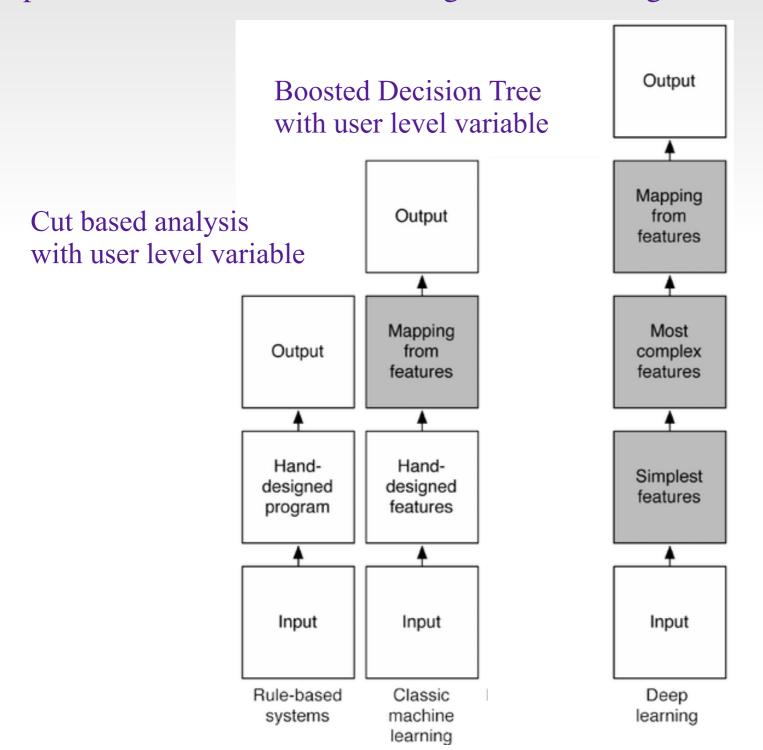
SUPERVISED

UNSUPERVISED

REINFORCEMENT

Work Flow

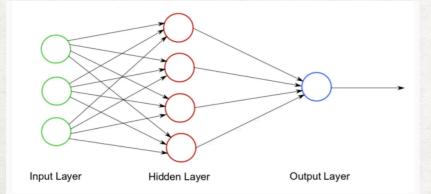
- Deep Machine Learning: Power and flexibility by representing the complex world as a nested hierarchy of concepts -> Each concept defined in relation to simpler concepts
- ▶ DNN outperformed other machine learning and hand-designed functionality

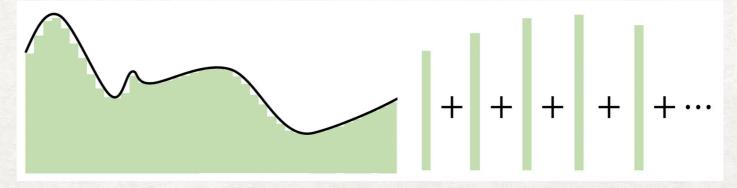


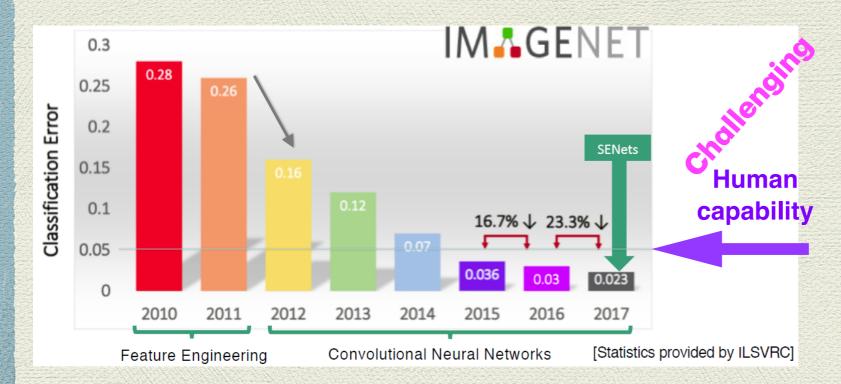
MACHINE LEARNING

AND .. GOING DEEPER

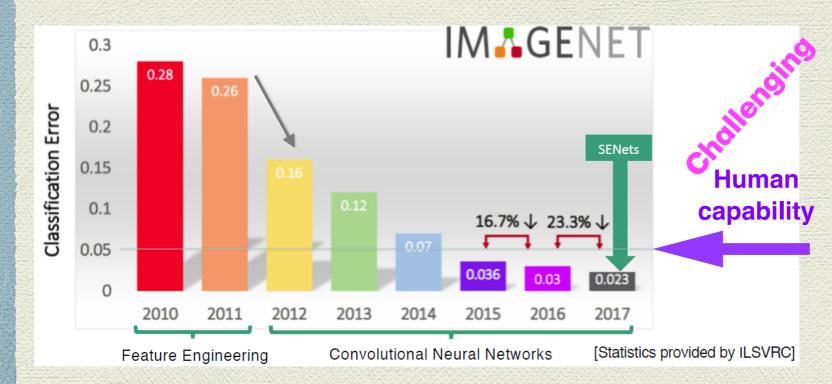
- Universal function approximation: NN with a single hidden layer can approximate any continuous function to any desired precision!
- Deep learning models with multiple hidden layers solves the need for infinitely large no of nodes in shallow NN
- Learning scalable with data larger data for better performance
- Deep learning models are now capable of extracting feature directly
 from low level data
 - End for physics intuitive high level variables from domain experts?







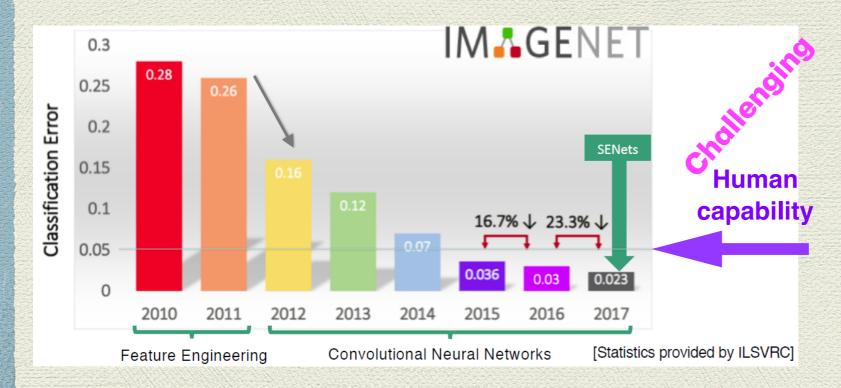
- ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition
- ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)]
- Since then, these competitions are consistently won by deep convolutional nets



- ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition
- ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)]
- Since then, these competitions are consistently won by deep With Ilya Sutskever & convolutional nets

 PhD advisor Geoffrey Hinton

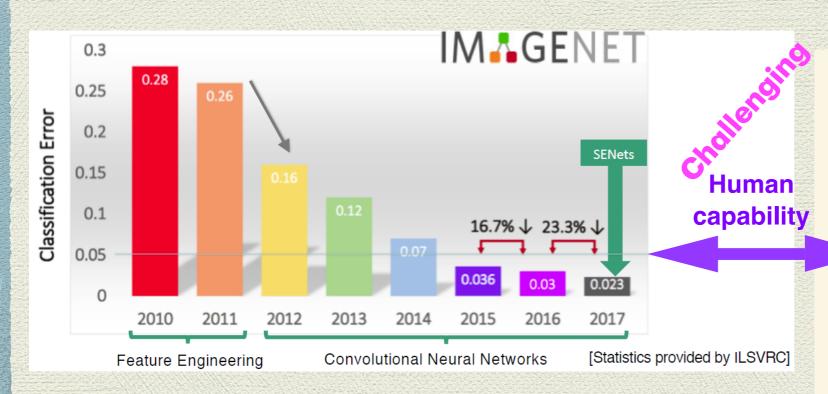
ImageNet Challenge IMAGENET 1,000 object classes (categories). Images: 1.2 M train 100k test.



- ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition
- ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)]
- Since then, these competitions are consistently won by deep With Ilya Sutskever & convolutional nets

 PhD advisor Geoffrey Hinton
- Imitate (defeat) human intelligence and capability in
 visual perception, speech recognition, decision-making, language processing, and so on.

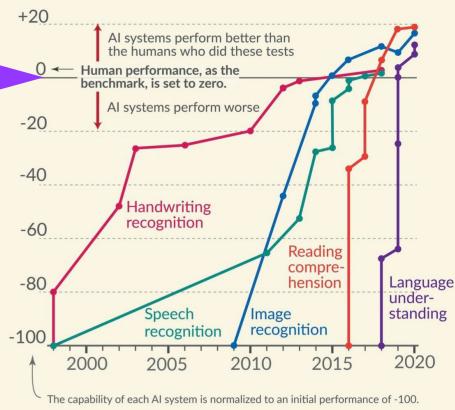
ImageNet Challenge IMAGENET 1,000 object classes (categories). Images: 1.2 M train 100k test.



- ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition
- ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)]
- Since then, these competitions are consistently won by deep convolutional nets

Language and image recognition capabilities of AI systems have improved rapidly

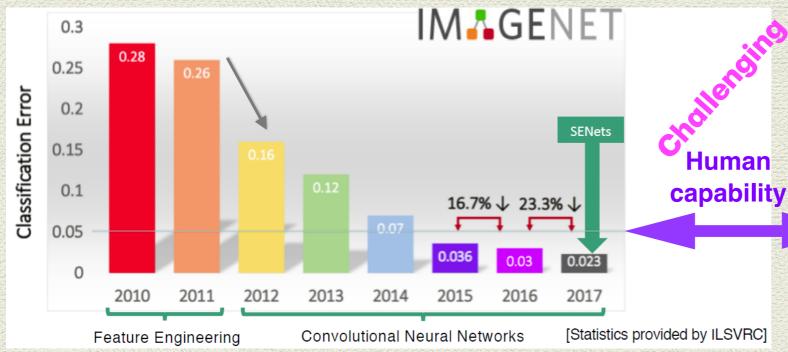
Test scores of the AI relative to human performance



Source: Kiela et al. (2021) Dynabench: Rethinking Benchmarking in NLP OurWorldInData.org/artificial-intelligence • CC BY

Imitate (defeat) human intelligence and capability in
 visual perception, speech recognition, decision-making, language processing, and so on.

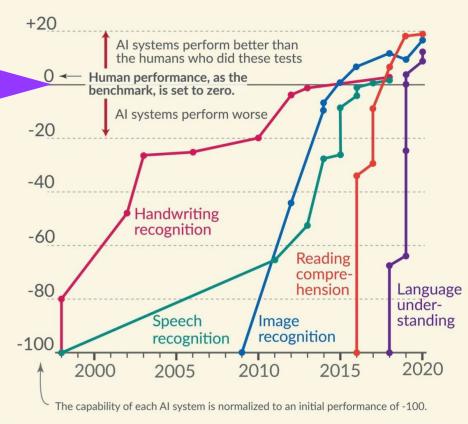
New era of Artificial General intelligence (AGI)



- ► ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held each year : largest contest in object recognition
- ▶2012 AlexNet [Deep CNN by Alex Krizhevsky etal] ~ 15.4% error (2nd 26.2%!)]
- Since then, these competitions are consistently won by deep convolutional nets

Language and image recognition capabilities of AI systems have improved rapidly

Test scores of the AI relative to human performance



Source: Kiela et al. (2021) Dynabench: Rethinking Benchmarking in NLP OurWorldInData.org/artificial-intelligence • CC BY

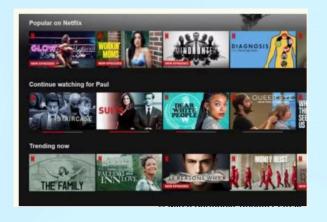
Imitate (defeat) human intelligence and capability in
 visual perception, speech recognition, decision-making, language processing, and so on.

While world is mesmerised with different impossibles done with ML applications in our everyday life,

CONTENT RECOMMENDATION

SELF-DRIVING CAR

GAMING



ROBOTICS

Artificial Intelligence in Everyday Apps

Predictive Search

Object Detection

News Feed Relevance

Recommendations

Matching Algorithm

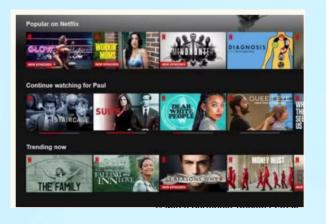
Smart Replies

While world is mesmerised with different impossibles done with ML applications in our everyday life,

CONTENT RECOMMENDATION

SELF-DRIVING CAR

GAMING



ROBOTICS

Artificial Intelligence in Everyday Apps

Predictive Search

Object Detection

News Feed Relevance

Recommendations

Matching Algorithm

Smart Replies

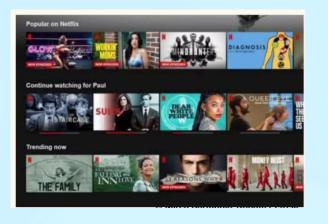
Dramatic shifts are also happening in almost all research fields—including Healthcare, Medicine, Finance, Education services etc

While world is mesmerised with different impossibles done with ML applications in our everyday life,

CONTENT RECOMMENDATION

SELF-DRIVING CAR

GAMING



ROBOTICS

© ChatGPT Gemini

Artificial Intelligence in Everyday Apps

Predictive Search

Object Detection

News Feed Relevance

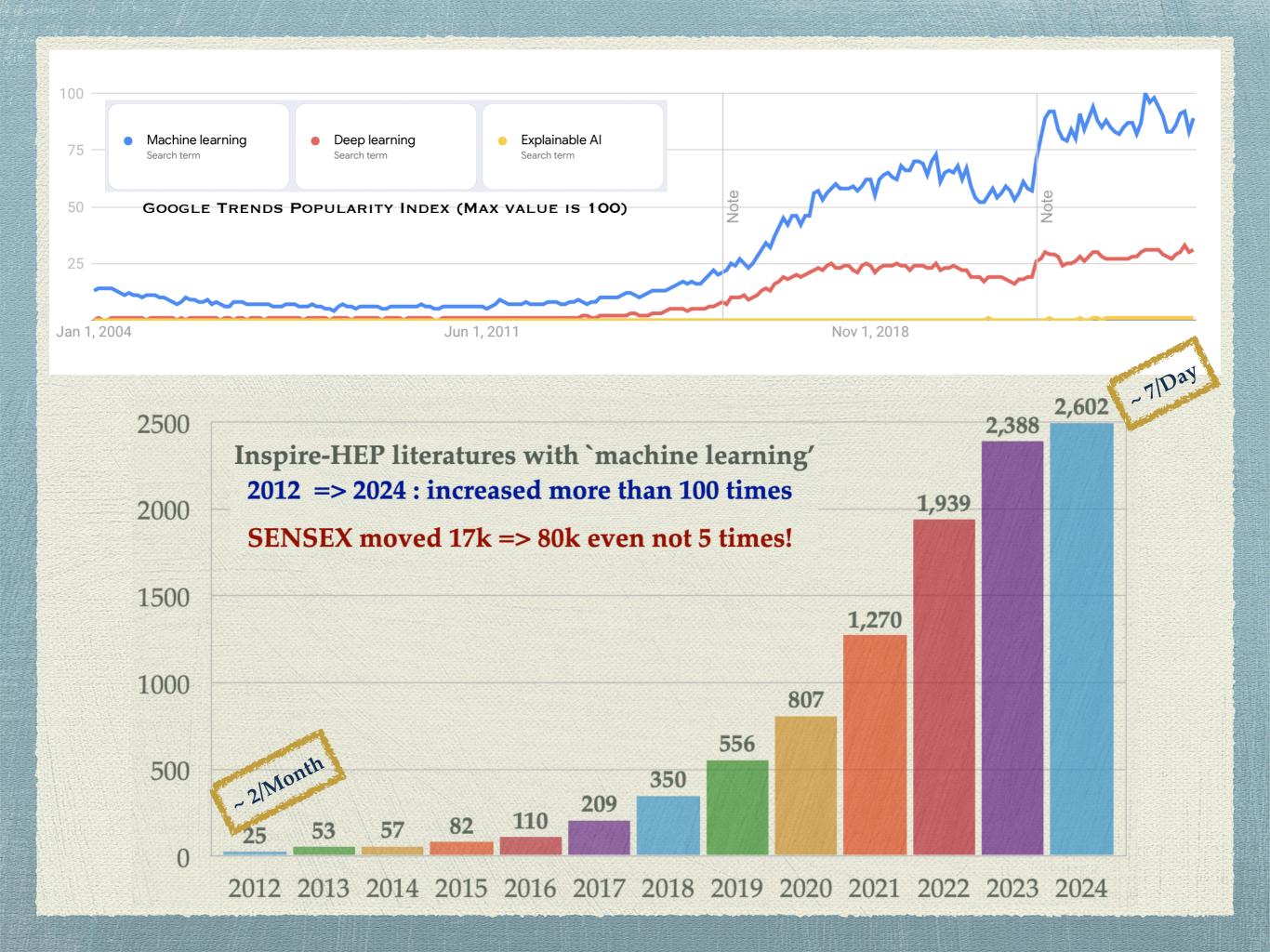
Recommendations Matching Algorithm

Smart Replies

Dramatic shifts are also happening in almost all research fields—including Healthcare, Medicine, Finance, Education services etc

Several experimental results found their relevance — such scientific discoveries are ML driven





DEEP MACHINE LEARNING

CATEGORY

Strategy — Representations — Targets / tagging — strategies

- Classification
- → Jet Image
- → Event Image
- → Sequence (Recurrent NN)
- Graph (Graph NN)
- Sets (Point cloud Graph)

- Quarks vs gluons
- → Boosted H / W / Z / Top tag
- → New particles and models
- Particle tagging at detector
- → Neutrino flavour

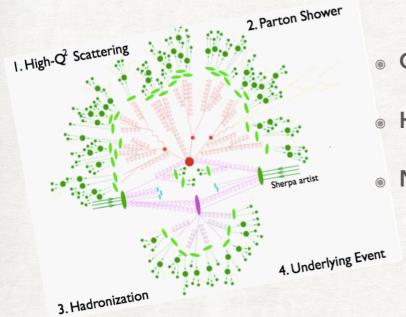
- → Weak/Semi/Unsupervised
- Reinforcement Learning
- Quantum Machine Learn
- → Feature Ranking
- → Optimal Transport

- Regression
- Parameter estimation
- → Pileup mitigation
- → Parton Distribution Func
- → Symbolic Regression
- → Function Approximation
- GANs
- → Autoencoders
- → Phase space generation
- → Normalizing flows

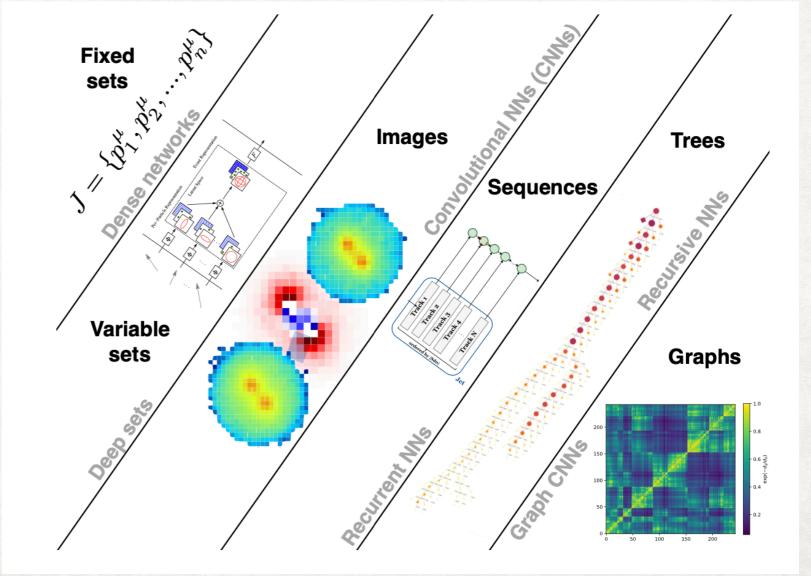
Generative models

JET REPRESENTATION

JET DATA - IMAGES, SEQUENCES AND SETS

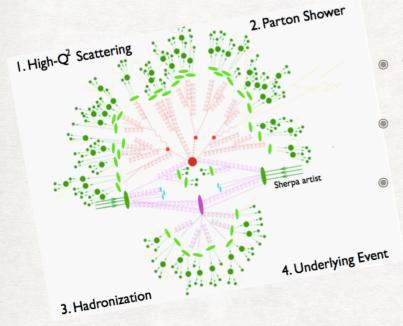


- QCD Jets have a rich & complex structure perfect playing field
- How related to the first principles in Quantum Chromodynamics?
- No unique way for encoding radiation pattern into a particular data structure



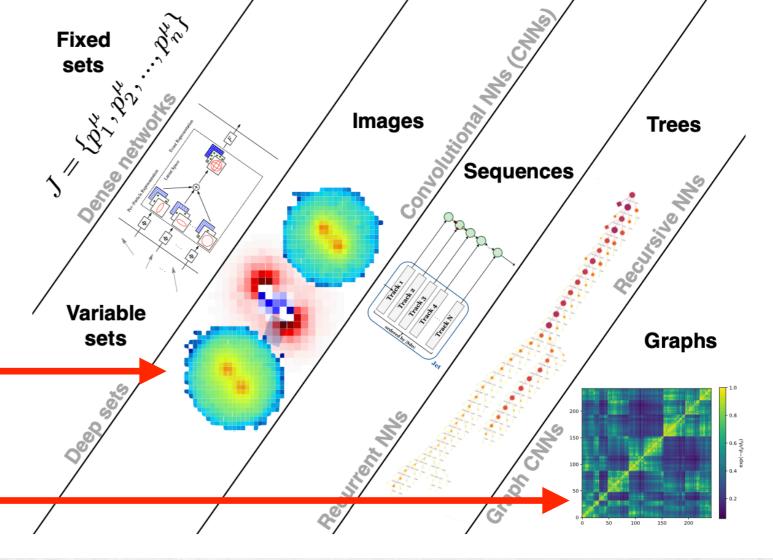
JET REPRESENTATION

JET DATA - IMAGES, SEQUENCES AND SETS



- QCD Jets have a rich & complex structure perfect playing field
- How related to the first principles in Quantum Chromodynamics?
- No unique way for encoding radiation pattern into a particular data structure

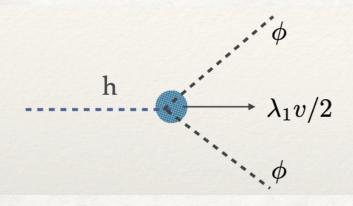
- * Theoretically motivated Qn
- Low level image of jet and QCD radiation Using CNN network
- > Hadronic jet and QCD radiation Using GNN network



Partha Konar, PRL

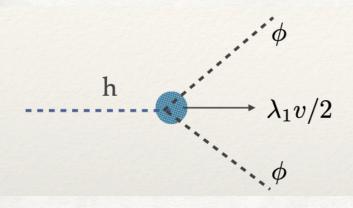
Deep Learning Frontier.. in Particle Physics

arXiv:1709.04464



For $m_h < m_\phi/2$, Higgs can decay to a pair of Dark Matter.

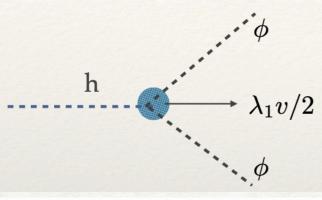
Decay width
$$\Gamma_{h o \phi \phi} = rac{\lambda_1^2 v^2}{32 \pi m_h^2} (m_h^2 - 4 m_\phi^2)^{1/2}$$



For $m_h < m_\phi/2$, Higgs can decay to a pair of Dark Matter.

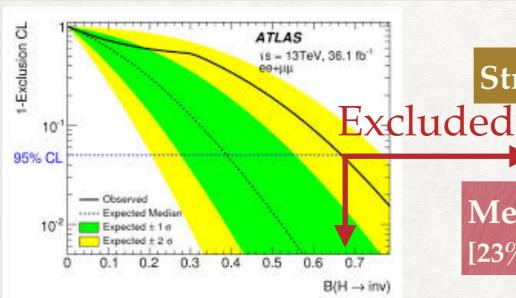
Decay width
$$\Gamma_{h \to \phi \phi} = \frac{\lambda_1^2 v^2}{32 \pi m_h^2} (m_h^2 - 4 m_\phi^2)^{1/2}$$

Strong limit => (Higgs portal) DM models constraint



For $m_h < m_\phi/2$, Higgs can decay to a pair of Dark Matter.

Decay width
$$\Gamma_{h \to \phi \phi} = \frac{\lambda_1^2 v^2}{32 \pi m_h^2} (m_h^2 - 4 m_\phi^2)^{1/2}$$



Strong limit => (Higgs portal) DM models constraint

Measured Br(h->inv) >> SM prediction (< 0.1%)!! [23% (36fb), 10% (140fb)



· · · · Expected Median

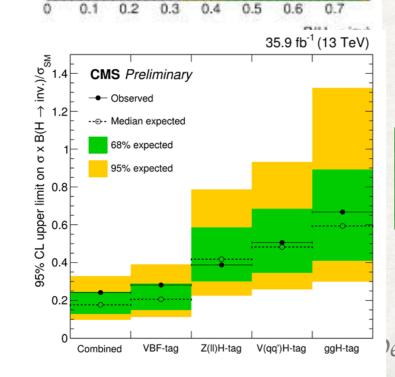
For $m_h < m_\phi/2$, Higgs can decay to a pair of Dark Matter.

Decay width
$$\Gamma_{h o \phi \phi} = \frac{\lambda_1^2 v^2}{32 \pi m_h^2} (m_h^2 - 4 m_\phi^2)^{1/2}$$

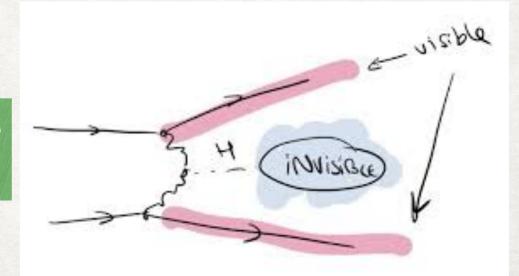
1-Exclusion CL ATLAS is = 13TeV, 36.1 fb Excluded 10 95% CL

Strong limit => (Higgs portal) DM models constraint

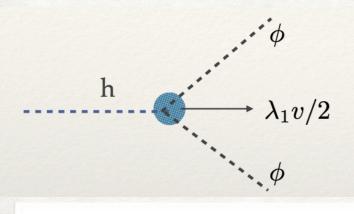
Measured Br(h->inv) >> SM prediction (< 0.1%)!! [23% (36fb), 10% (140fb)



VBF is most sensitive channel



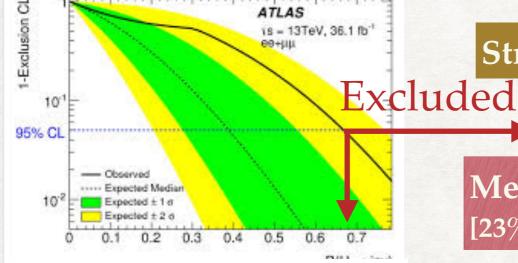
Peep Learning Frontier.. in Particle Physics



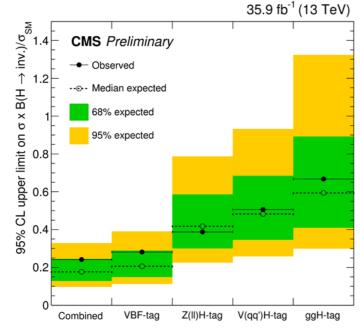
For $m_h < m_\phi/2$, Higgs can decay to a pair of Dark Matter.

Decay width
$$\Gamma_{h o \phi \phi} = \frac{\lambda_1^2 v^2}{32 \pi m_h^2} (m_h^2 - 4 m_\phi^2)^{1/2}$$

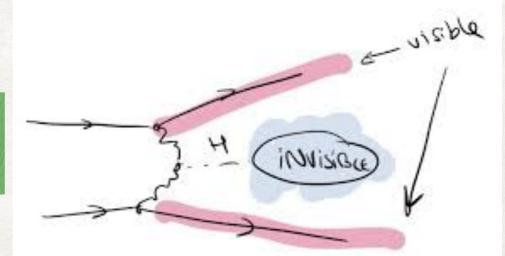
Strong limit => (Higgs portal) DM models constraint



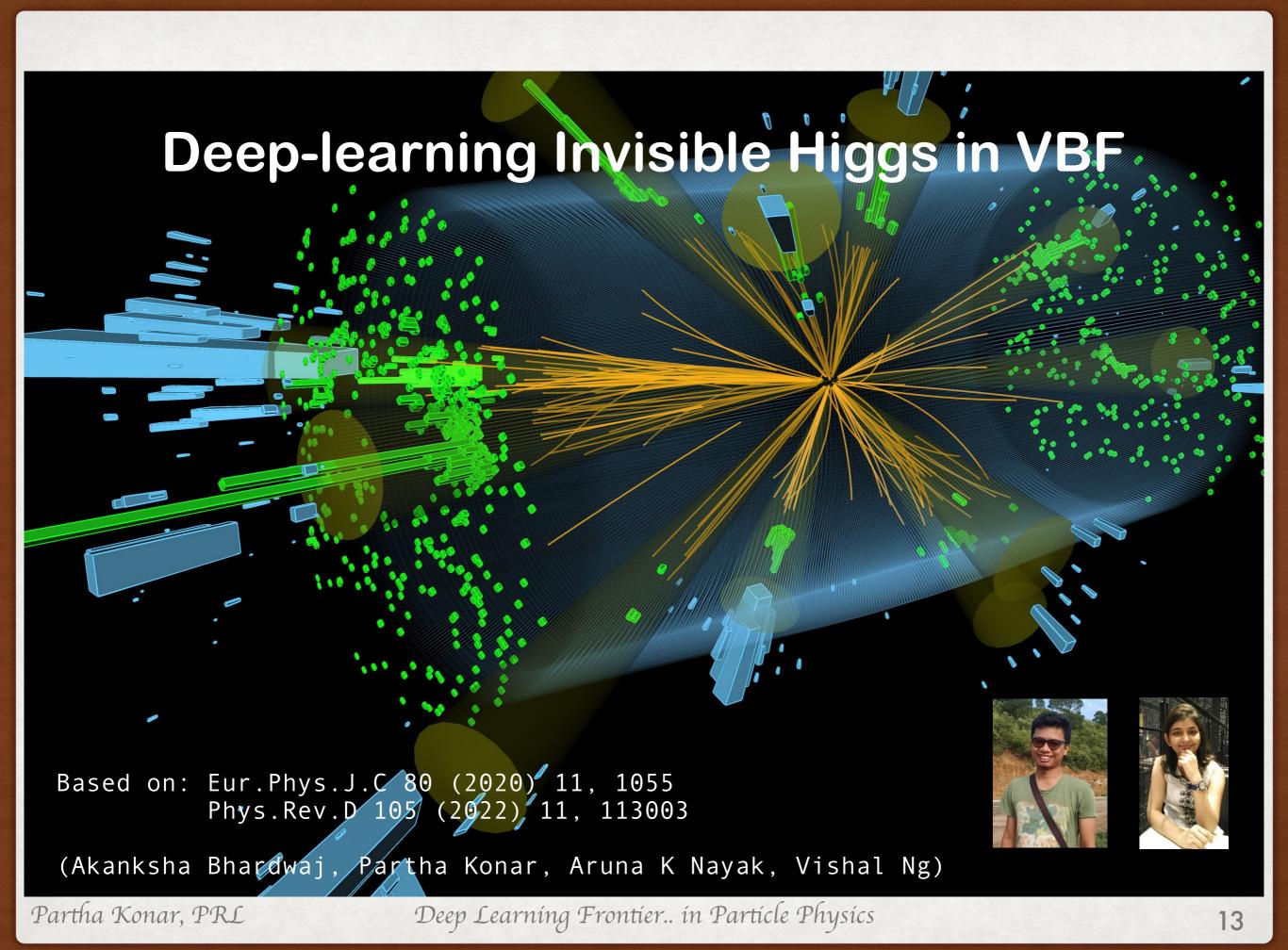
Measured Br(h->inv) >> SM prediction (< 0.1%)!! [23% (36fb), 10% (140fb)

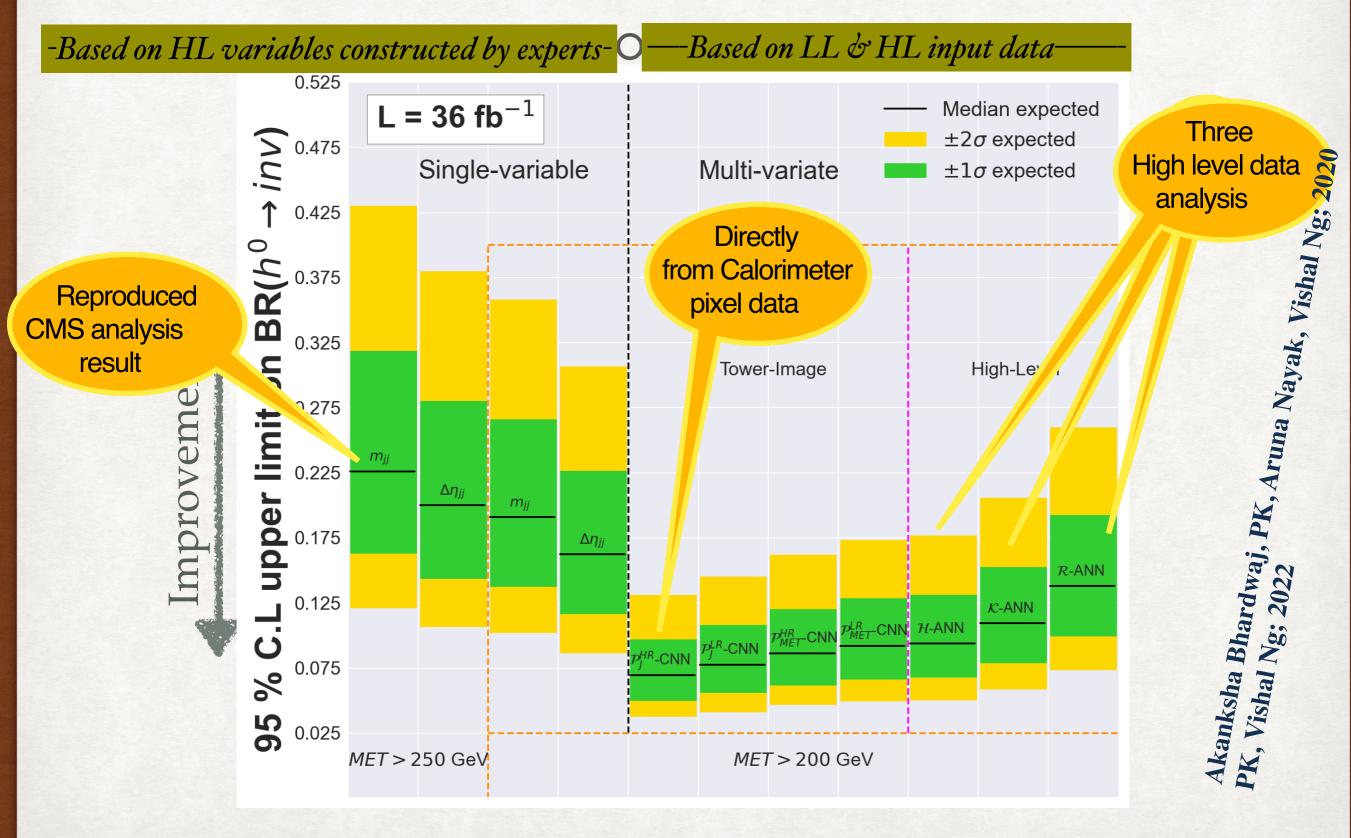


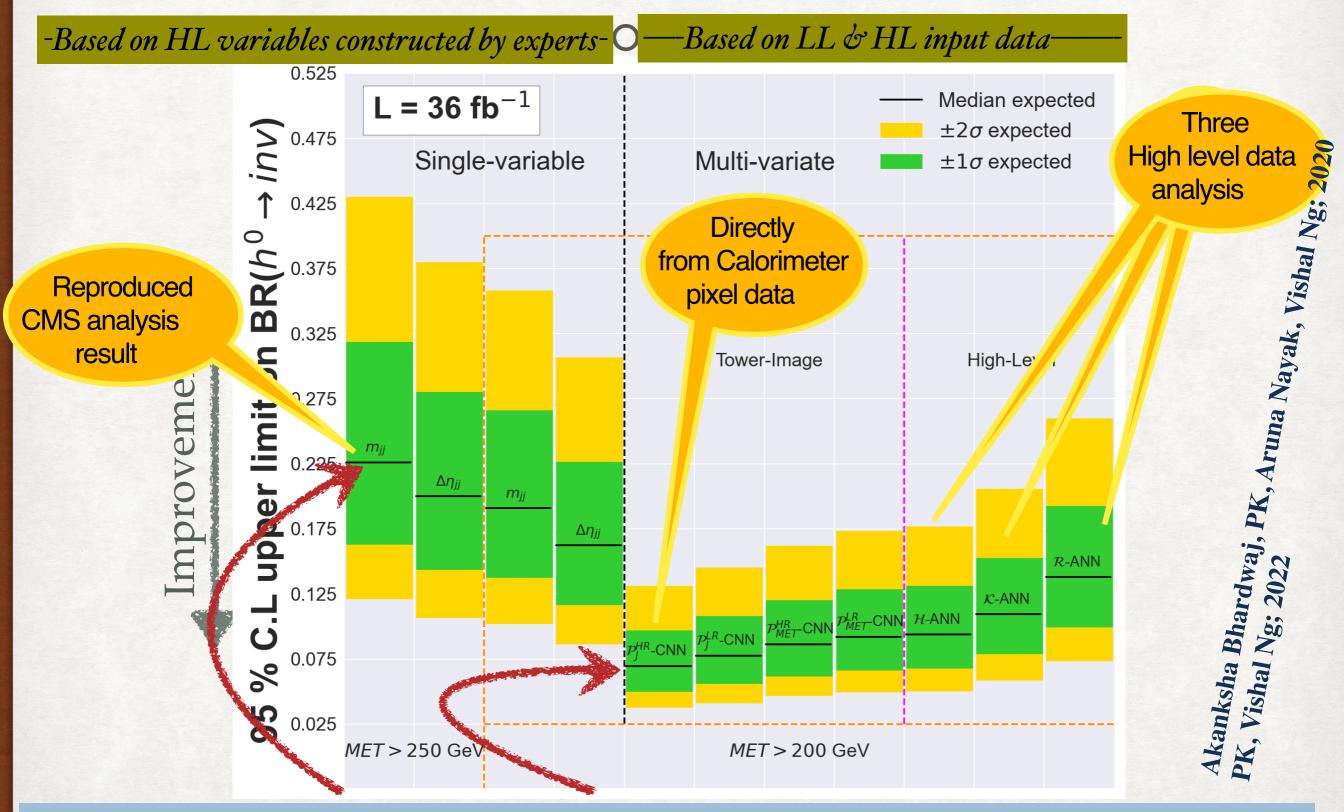
VBF is most sensitive channel



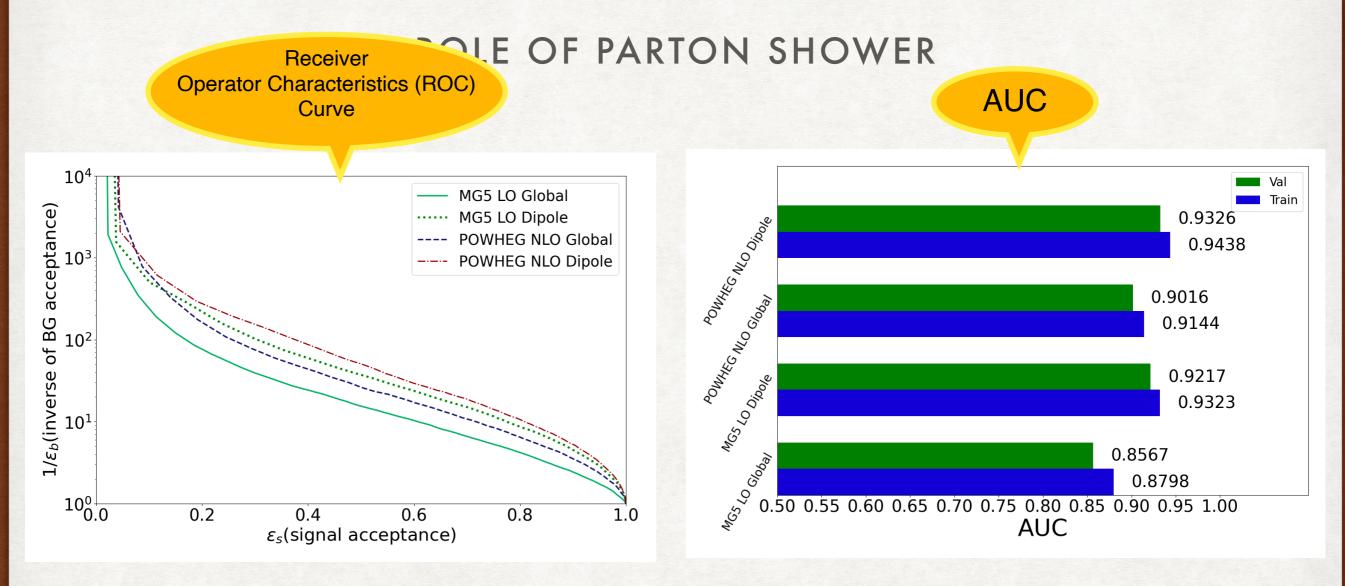
Can CNN learn characteristics of VBF signal?
Deep Learning Frontier.. in Particle Physics



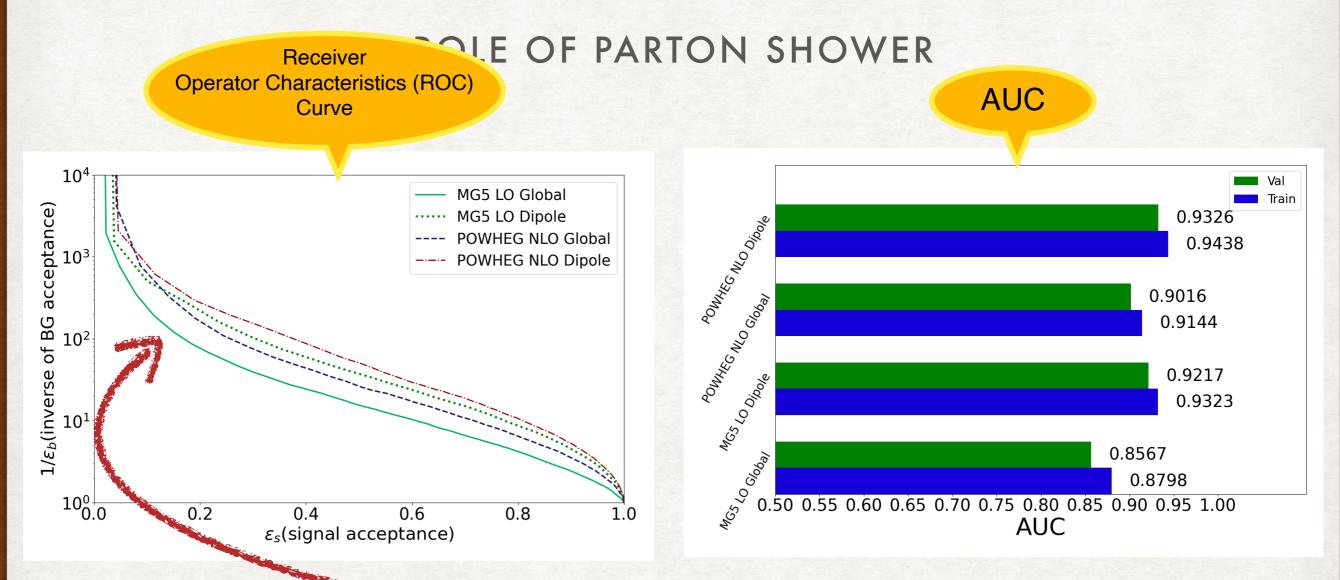




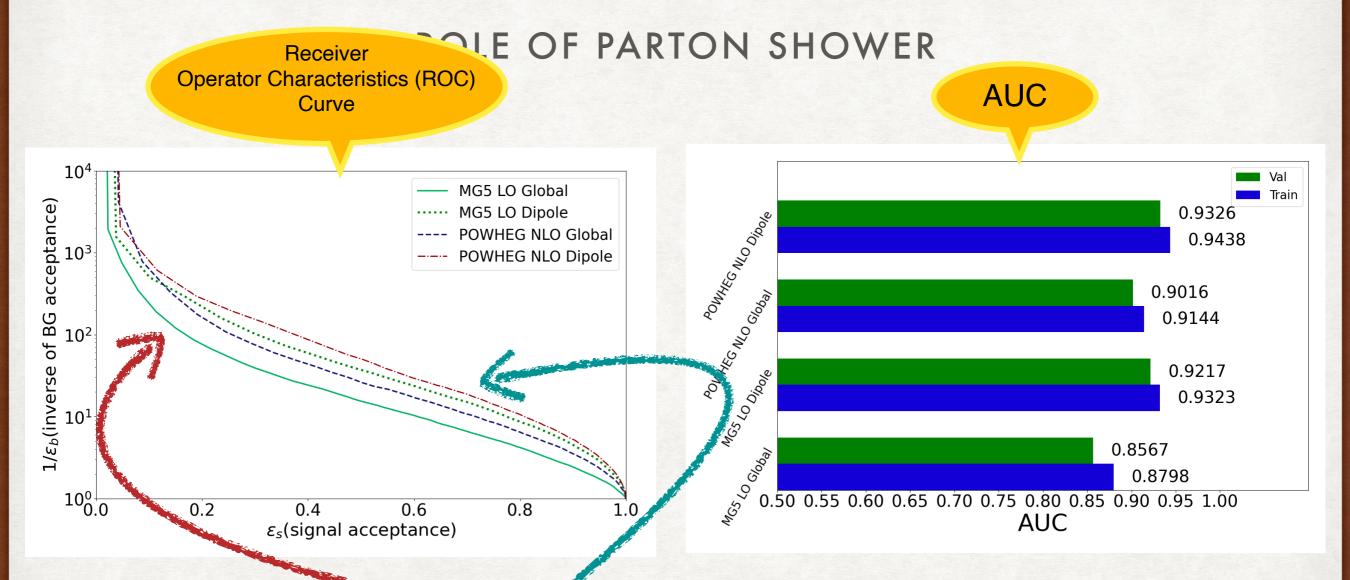
Factor of three improvement using the same data! Hours of CNN training just extracted the relevant underlying feature better than our decades of research!



- √ LO + Global parton shower scheme shows lowest performance
- √ NLO + Dipole parton shower scheme shows best performance
- √ Rest two (LO+ Dipole & NLO+ Global) shows intermediate performance



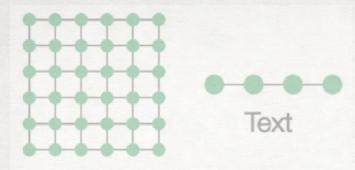
- LO + Global parton shower scheme shows lowest performance
- √ NLO + Dipole parton shower scheme shows best performance
- Rest two (LO+ Dipole & NLO+ Global) shows intermediate performance



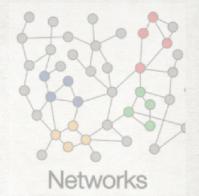
- LO + Global parton shower scheme shows lowest performance
- √ NLO + Dipole parton shower scheme shows best performance
- Rest two (LO+ Dipole & NLO+ Global) shows intermediate performance

Accurate description

Cochnamoral in analysis arning Frontier. in Particle Physics

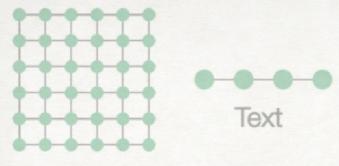


BEYOND CNN GRAPH NEURAL NETWORK

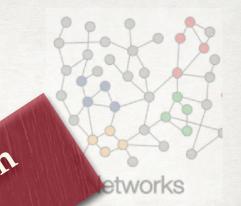


Images

- Detectors calorimeter hits are typically very sparse and unstructured
- Varying number of reconstructed constituents
- Large number of tunable parameters
- ✓ Euclidean image (CNN) => general non-Euclidean domain (GNN) : Geometric deep learning
- Graph: Event as point cloud with each entry containing a vector composed of observables
- Graph == Nodes (data point) + Edges (connections are as important as the data itself)
- Message passing operation: nodes features and edge features are exchanged and provide a sophisticated feature extraction
- GNN is very powerful recent concept mostly unexplored!!



BEYOND CNN



- the representation the representation and the representation of the representation of the representation of the representation and the representation of t
- lata point) + Edges (connections are as important as
- raph ecous data with Variable with ear proseneous data provide a p ged and provide a sophisticated feature extraction
- NN is very powerful recent concept mostly unexplored!!

GNN in HEP

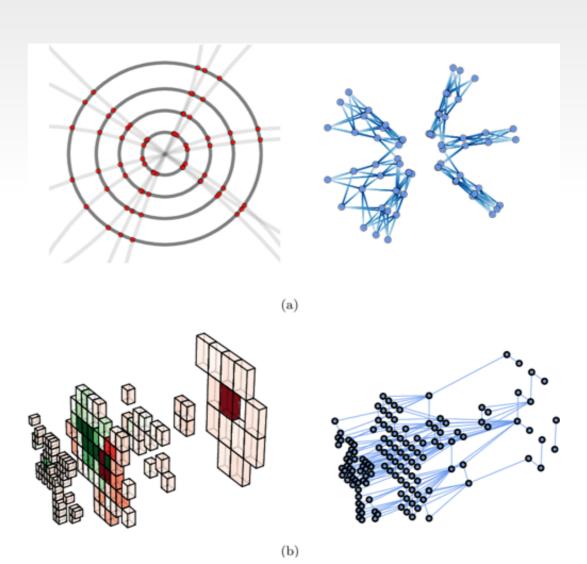
→ Graph Classification —

Jet Classification: quark/gluon discrimination;

Boosted top/ W/ Z/ Higgs tagging vs QCD jet

Importance of the attention mechanism

- ➡ Event Classification —
 full event identification in collider physics
 classification of the signal in the IceCube detector
 event classification for other signal topologies
- Node Classification and Regression
 Pileup Mitigation
 Calorimeter Reconstruction
 Particle Flow Reconstruction
 per-jet tagging efficiency
- → Edge Classification
 Charged Particle Tracking
 Secondary Vertex Reconstruction



Constructing GNN aware of IRC safety Based on: arxiv: JHEP 02 (2022) 060 # Cited in newly introduced AI chapter - PDG'22 & 24 JHEP 01 (2024) 113

(Partha Konar, Vishal Ng, Michael Spannowsky)

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

CONSTRUCTING PHYSICS AWARE NETWORK

Any QCD observable should be

- sensitive to the physics you want to probe
- calculable from first principles in Quantum Chromodynamics (QCD)

IRC safety ensures that the phase space restrictions that the measured value of an observable do not disrupt the cancellation between the real and virtual contributions to the observable at each perturbative order when the soft and collinear regions of phase space are inclusively summed over [Sterman and Weinberg]

CONSTRUCTING PHYSICS AWARE NETWORK

Any QCD observable should be

- sensitive to the physics you want to probe
- calculable from first principles in Quantum Chromodynamics (QCD)

IRC safety ensures that the phase space restrictions that the measured value of an observable do not disrupt the cancellation between the real and virtual contributions to the observable at each perturbative order when the soft and collinear regions of phase space are inclusively summed over [Sterman and Weinberg]

How can we make neural networks aware of this physics input? So that, it treats all hadronic/jet analysis in a IRC safe way.

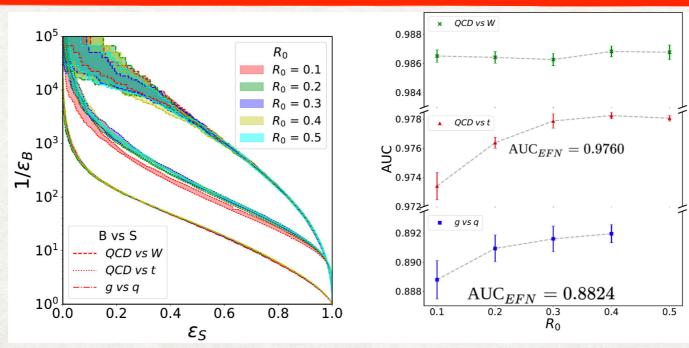
CONSTRUCTING PHYSICS AWARE NETWORK

Any QCD observable should be

- sensitive to the physics you want to probe
- calculable from first principles in Quantum Chromodynamics (QCD)

IRC safety ensures that the phase space restrictions that the measured value of an observable do not disrupt the cancellation between the real and virtual contributions to the observable at each perturbative order when the soft and collinear regions of phase space are inclusively summed over [Sterman and Weinberg]

How can we make neural networks aware of this physics input? So that, it treats all hadronic/jet analysis in a IRC safe way.

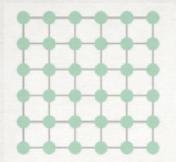


Deep Learning Frontier.. in Particle Physics

Interpretability of Deep Learning:

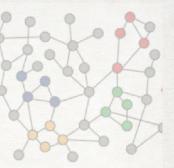
Opening the Black Box

(Akanksha Bhardwaj, Partha Konar, Vishal Ng)



WHY INTERPRETABILITY MATTERS

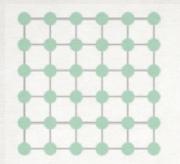
THE TNNER WORKINGS OF BLACK BOX MODELS



Networks

- Images
- Difficult to understand how they arrive at their decisions
- Lack of transparency can hinder trust, debugging
- Limit deployment of Al systems ensuring fairness, accountability, and safety

- As researcher, often we look for understanding the laws of nature, rather than efficiency!
- Dependence, Dominance, effective analytic expressions
- Symmetry and Group



WHY INTERPRETABILITY MATTERS

THE TNNER WORKINGS OF BLACK BOX MODELS

Images

- Difficult to understand how they arrive at their decis
- Lack of transparency can hinder trust, debuggi
- Limit deployment of AI systems ensuring trabless, accountability, and safety

 As researcher, often we languaged highly desirabless, accountability, and safety

 As researcher, often we languaged highly desirabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety

 Dependent of AI systems ensuring trabless, accountability, and safety trabless, accountability, accountab
- understanding the laws of nature,
- Dependen minance, effective analytic expressions
- and Group Symr

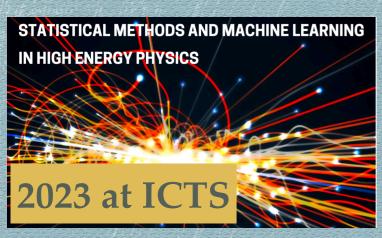
CNN GNN Vishal Ngairangbam Solar flare AI/ML Rishav Roshan Akanksha Bhardwaj Cosmology Jets Abhijit Kumar Saha Sudipta Show **BSM** Higgs Juhi Dutta Dark Matter Anupam Ghosh SUSY Tanmoy Mondal Precision Purusottam Ghosh Calculation Non-Commutative Extra Dim J. Selvaganapathy Abhaya Kumar Swain Mass Variables Collider - LHC Myeonghun Park Saumyen Kundu Arindam Das **Epidemic** Joydeep Chakrabortty **Dynamics**

Neutrino

Gulab Bambhaniya

Mathematical

Modelling



Primarily for Students and PDFs working on using deep learning

Preparatory school (Online)
[June 12 - 23 2023]

Lecture + Tutorial 28 Aug - 04 Sep 2023

> Workshop 5-8 Sep 2023

https://www.icts.res.in/program/ml4he

Machine Learning for Particle and Astroparticle Physics
ML4HEP 2024

