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Three Ways to Learn

SUPERVISED

UNSUPERVISED

REINFORCEMENT




» Deep Machine Learning : Power and flexibility by representing the complex world as a nested
hierarchy of concepts -> Each concept defined in relation to simpler concepts

» DNN outperformed other machine learning and hand-designed functionality
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~ MACHINE LEARNING

AND .. GOING DEEPER

@ Universal function approximation: NN with a single hidden layer can
approximate any continuous function to any desired precision!

® Deep learning models with multiple hidden layers solves the need for
infinitely large no of nodes in shallow NN

e Learning scalable with data - larger data for better performance

®© Deep learning models are now capable of extracting feature directly

from low level data

— End for physics intuitive high level variables from domain experts?

Input Layer Hidden Layer

Partha Konar, PRL CDeego Leaming Frontier.. in Particle Tﬁysics
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Progress of Deep Learning
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® New era of Art|f|C|aI General mtelllgence (AGI)
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Dramatic sﬁlfts are also ﬁapyening in almost all research fiefcfs —

incfucfing Healthcare, Medicine, Finance, Education services etc

Several experimenmf results founcf their relevance — such scienmfic discoveries are ML driven
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DEEP MACHINE LEARNING
CATEGORY

Strategy Representations Targets / tagging Strategies

= Jet Image = Quarks vs gluons = Weak/ Semi/ Un-
= FEvent Image = Boosted H/W/Z/1op tag|| supervised

Classfication ||= Segquence (Recurrent NN) || = New particles and models || = Reinforcement Learning
= Graph (Graph NN) = Particle tagging at detector ||= Quantum Machine Learn
= Sets (Point cloud - Graph) ||= Neutrino flavour = Feature Ranking

= Optimal Transport
=  Parameter estimation

= Pileup mitigation
Regression || = Parton Distribution Func
= Symbolic Regression
= Function Approximation
= (ANs
= Autoencoders
Generative models = Phase space generation
= Normalizing flows

Anomaly detection = :
C":*g;?'z ’K%lnat’, PRL Deep Learning Frontier.. in Particle ?ﬁysics HEP ML Living Reviews 1



https://iml-wg.github.io/HEPML-LivingReview/

JET DATA - IMAGES, SEQUENCES AND SETS

3 parton SO

o QCD Jets have a rich & complex structure - perfect playing field
o How related to the first principles in Quantum Chromodynamics?

e No unique way for encoding radiation pattern into a particular data structure

Partha Konar, PRL @eejo Learning Frontier.. in Particle Tﬁysics arX1v:1709.04464 11




JET DATA - IMAGES, SEQUENCES AND SETS

5 parton ShOWE!

o QCD Jets have a rich & complex structure - perfect playing field
o How related to the first principles in Quantum Chromodynamics?

e No unique way for encoding radiation pattern into a particular data structure

Theoretically motivated Qn

Variable
< Low level image of jet and QCD radiation sets f'““.
h= =

Using CNN network

Q I:
o il
& b

2y -
&

< Hadronic jet and QCD radiation
Using GNN network

Partha Konar, PRL @eejo Learning Frontier.. in Particle Tﬁysics arX1v:1709.04464




HIGGS INVISIBLE DECAY

For mp < my/2, Higgs can decay to a pair of Dark Matter.

2.2
/\1v

Decay width Phoos = 32mm?2

Partha Konar, PRL Deep Leaming Frontier.. in Particle ?ﬁysics



HIGGS INVISIBLE DECAY

For mp < my/2, Higgs can decay to a pair of Dark Matter.

2)1/2

Strong limit => (Higgs portal) DM models constraint

Partha Konar, PRL CDecgo Leaming Frontier.. in Particle Tﬁysics



HIGGS INVISIBLE DECAY

For mp < my/2, Higgs can decay to a pair of Dark Matter.

D
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18 = 13TeV, 36.1 " -

g Strong limit => (Higgs portal) DM models constraint
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]
] Measured Br(h->inv) >> SM prediction (< 0.1%)!!
i [23% (36fb), 10% (140£b)
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HIGGS INVISIBLE DECAY
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HIGGS INVISIBLE DECAY
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~ . . . 1{Can CNN learn characteristics of VBF signal?
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Deep-learning |
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Based on: Eur.Phys.J.Cd80 (2@2@;’11, 1055
Phys.Rev. D105/ (2622)711, 113003

(Akanksha ',ff/§,ha Konar, Aruna K Nayak, Vishal




INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

L=36fb"!

Single-variable Multi-variate

Directly

. from Calorimeter
Reproduced pixel data

CMS analysis
result § Tower-lmage
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Qj ;:
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O |
E ¥
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<
o

MET > 200 GeV

Partha Konar, PRL CDecgo Leaming Frontier.. in Particle Tﬁysics
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INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

L=36fb 1 Median expected
+20 expected Three

Single-variable Multi-variate +10 expected High level data
analysis

Directly

| from Calorimeter
Reproduced pixel data

CMS analysis
result . Tower-Image

Q)I ;:
E 3
VU 3
=4

O |

f"j
=R’
— | f

MET > 200 GeV

Factor of three improvement using the same data!
Hours of CNN training just extracted the relevant underlying feature better than our decades of research!




INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
Receiver —all= OF PARTON SHOWER

Operator Characteristics (ROC)
Curve AUC

—— MGS5 LO Global

MG5 LO Dipole
---- POWHEG NLO Global
——- POWHEG NLO Dipole
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AUC

&s(signal acceptance)

v parton shower scheme shows lowest performance
v NLO + Dipole parton shower scheme shows best performance

v Rest two ( Dipole & NLO+ ) shows intermediate performance

Partha Konar, PRL Deep Leaming Frontier.. in Pdrticle ?ﬁysics
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INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
Receiver —all= OF PARTON SHOWER

Operator Characteristics (ROC)
Curve AUC
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v NLO + Dipole parton shower scheme shows best performance

{ Rest two ( Dipole & NLO+ ) shows intermediate performan

Accurate description
{ Maming Frontier.. in Pdrticle ?ﬁysics
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BEYOND CNN

GRAPH NEURAL NETWORK

Detectors calorimeter hits are typically very sparse and unstructured
Varying number of reconstructed constituents

Large number of tunable parameters

Euclidean image (CNN) => general non-Euclidean domain (GNN) :
Geometric deep learning

Graph: Event as point cloud with each entry containing a vector
composed of observables

Graph == Nodes (data point) + Edges (connections are as important as
the data itself)

Message passing operation: nodes features and edge features are
exchanged and provide a sophisticated feature extraction

GNN is very powerful recent concept - mostly unexplored!!

Partha Konar, PRL @eejo Leammg Frontier.. in Particle ?ﬁysics




BEYOND CNN

GRAPH NEURAL NETWORK

NN is very powerful recent concept - mostly unexplored!!

Partha Konar, PRL i)eejo Leaming Frontier.. in Particle ?ﬁysics



CNNin HEDP
= Graph Classification —

Jet Classification : quark/gluon discrimination;
Boosted top/ W/ Z/ Higgs tagging vs QCD jet
Importance of the attention mechanism

= Event Classification —

full event identification in collider physics g i
classification of the signal in the IceCube detector o .
event classification for other signal topologies @ .

= Node Classification and Regression
Pileup Mitigation @
Calorimeter Reconstruction
Particle Flow Reconstruction
per-jet tagging efficiency

= Edge Classification
Charged Particle Tracking
Secondary Vertex Reconstruction

(b)

» 2007.13681



Constructing'GNN

0.0

@ ¢ ..
e © (o}
@

O

Based on: arxiv: JHEP 02 (2022) 060 !

# Cited in newly introduced AI chapter - PDG’ 22 & 24
JHEP 01 (2024) 113

(Partha Konar, Vishal Ng, Michael Spannowsky)

Partha Konar, PRL Deep Leaming Frontier.. in Particle Tﬁysics




CONSTRUCTING PHYSICS AWARE NETWORK

Any QCD observable should be
— sensitive to the physics you want to probe
— calculable from first principles in Quantum Chromodynamics (QCD)

IRC safety ensures that the phase space restrictions that the measured value of an
observable do not disrupt the cancellation between the real and virtual contributions
to the observable at each perturbative order when the soft and collinear regions of

phase space are inclusively summed over [Sterman and Weinberg]

Partha Konar, PRL Deep Leaming Frontier.. in Particle ?ﬁysics




CONSTRUCTING PHYSICS AWARE NETWORK

Any QCD observable should be
— sensitive to the physics you want to probe
— calculable from first principles in Quantum Chromodynamics (QCD)

IRC safety ensures that the phase space restrictions that the measured value of an
observable do not disrupt the cancellation between the real and virtual contributions
to the observable at each perturbative order when the soft and collinear regions of

phase space are inclusively summed over [Sterman and Weinberg]

How can we make neural networks aware of this physics input?

LSO that, it treats all hadronic/jet analysis in a IRC safe way.

Partha Konar, PRL Deep Leaming Frontier.. in Particle ?ﬁysics




CONSTRUCTING PHYSICS AWARE NETWORK

Any QCD observable should be
— sensitive to the physics you want to probe
— calculable from first principles in Quantum Chromodynamics (QCD)

IRC safety ensures that the phase space restrictions that the measured value of an
observable do not disrupt the cancellation between the real and virtual contributions
to the observable at each perturbative order when the soft and collinear regions of
phase space are inclusively summed over [Sterman and Weinberg]

How can we make neural networks aware of this physics input?
LSO that, it treats all hadronic/jet analysis in a IRC safe way.

x QCDvsW
0.988

0.986
0.984
0978 ., ocpvst

P AUC gy = 0.9760

QCD vs W + }
QCDvst ! '

0.1

Partha Konar, PRL Deep Leaming Frontier.. in Particle ?ﬁysics
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https://arxiv.org/abs/2404.16207

WHY INTERPRETABILITY MATTERS
THE'ITNNER WORKINGS OF BLACK BOX MODELS

Difficult to understand how they arrive at their decisions
Lack of transparency can hinder trust, debugging

Limit deployment of Al systems ensuring fairness, accountability,
and safety

As researcher, often we look for understanding the laws of nature,
rather than efficiency!

Dependence, Dominance, effective analytic expressions

Symmetry and Group

Partha Konar, PRL i)eejo Leaming Frontier.. in Particle ?ﬁysies
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STATISTICAL METHODS AND MACHINE LEARNING [kt

working on using deep learning
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