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Figure 5.1: Pre-inflationary era and initial conditions

momentum exchanges between the discrete spacetime and matter and we should ex-

pect a violation of the energy-momentum conservation in the e↵ective low energy

limit of the theory. In such a theory we modified the dynamical equations of gravity

to traceless UG equations. Dynamics with such modifications implies possibility of a

pre-inflationary era after which the universe entered a De Sitter phase. As a part of

the future exploration we propose that one should study the perturbation theory in

this pre-inflationary era and see how the initial conditions set at the end of this phase

translate to the initial conditions set in the aftermath of inflation in the standard cos-

mological theories (figure 5.1). To that end we have constructed the modified Einstein

equations for the linear perturbation theory and then also suggested the changes to

be made in the Boltzmann equations. The next logical step should be to solve these

equations.
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Primordial seed !



Universe : Post Born Quantum 
Past tracking inevitably takes the universe into the quantum domain ?


How do we know if the universe was ever quantum ?


Primordial seed             large wavelength 9/10         Freezing of Modes           

ESA



Puzzle at hand !
The Universe (homogeneous and isotropic)  expands and accelerates !


For that to happen :  ρ + 3P < 0


Normal matters do not do that !


So we invoke Dark energy : Entity with negative pressure



Have we ever seen such a thing ?

A mysterious cosmological constant does that and so does a slowly evolving homogeneous field !


Vacuum Fluctuations : Also do that 


Can acceleration of the universe be achieved  without having quantum effects ?


But they preserve some quantumness of matter riding atop !


Wikipedia image

Negative Pressure providers are not known to suppress quantum properties  !




What happened to universe’s quantumness ?

Tracing out unobserved matter d.o.f results in decoherence for gravitational d.o.f.


Once the “Classical” geometry has emerged,  for observable matter d.o.f.  one can do semi classical analysis.


Yet primordial seeds are required to turn classical, preferably by the time inflation ends
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Decoherence in the density matrix describing quantum three-geometries
and the emergence of classical spacetime
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We construct the quantum gravitational density matrix p(g &,g'&) for compact three-geometries
by integrating out a set of unobserved matter degrees of freedom from a solution to the Wheeler-
DeWitt equation %[g &,qz~, «„,]. In the adiabatic approximation, p can be expressed as exp( —l )

where I (g &,g'&) is a specific "distance" measure in the space of three-geometries. This measure
depends on the volumes of the three-geometries and the eigenvalues of the Laplacian constructed
from the three-metrics. The three-geometries which are "close together" (l (&1) interfere quantum
mechanically; those which are "far apart" (I »1) are suppressed exponentially and hence contrib-
ute decoherently to p. Such a suppression of "off-diagonal" elements in the density matrix signals
classical behavior of the system. In particular, three-geometries which have the same intrinsic
metric but differ in size contribute decoherently to the density matrix. This analysis provides a pos-
sible interpretation for the semiclassical limit of the wave function of the Universe.

I. INTRODUCTION AND SUMMARY

If gravitationa1 effects are ignored, then physical in-
teractions can be studied in a fixed, Aat, Lorentzian
spacetime. When the gravitational field is present this
situation changes drastically. Since we cannot distin-
guish between the effects of gravity and that of a curved
spacetime we can no longer work with a Aat spacetime.
Moreover, changes in the energy density of matter fields,
which are inevitable in any nontrivial dynamical situa-
tion, will lead to a time-dependent spacetime structure.
We have, therefore, to treat spacetime as a dynamical en-
tity.
Classically, this can be done by using Einstein's equa-

tions. A classical solution to Einstein s equations will de-
scribe a dynamical spacetime evolving in consonance
with the energy density of the matter fields.
Such a picture, however, cannot be completely correct.

We know that the matter fields are described by a quan-
tum theory and not by a classical theory. In particular,
the laws governing the matter fields are of a probabilistic
nature. The gravitational field produced by such a source
should necessarily display this probabilistic character at
some level.
The only consistent way of introducing such a proba-

bilistic character into the description of spacetime is to
quantize gravity as well. ' In a fully quantized version of
the theory, we expect the Universe to be described by a
grand wave function ql(g„, q„) which depends on both
the gravitational degrees of the freedom g~ and the
matter (field) degrees of freedom q„. Broadly speaking,
we expect the quantity ~%(g~, q„)~ to be proportional to
the probability of occurrence of the values [g„]and [q„]
"simultaneously. " (To define the notion of simultaneity
we have to use some matter variable as a "clock"; it is as-
sumed that this nontrivial task can be accomplished. ) We
also hope that the expectation values of physical observ-

ables can be computed from 4 in the usual manner.
This wave function satisfies the Wheeler-DeWitt equa-

tion which can be written, in a concise notation, as

[——,'1 V +1 V(g„)+H (p„,q„,g„)]%(g„,q„)=0,

where g~ stands for the metric g &(a,P=1,2, 3) on the
three-space, V is the Laplacian in the superspace of
three-geometries constructed using the DeWitt metric,
V is the superspace potential, I is the Planck length, and
H (p„,q„,g„) is the matter Hamiltonian. While Eq. (1)
offers a formal solution to the problem of quantizing
gravity, it is not of much practical value. In addition to
the technical difficulties in solving (1), which are formid-
able, we are also faced with several nontrivial interpreta-
tional issues.
Consider, for example, the fo1lowing situation. Let 'P&

and qlz be two solutions of Eq. (1). We will assume that
these two solutions are characterized by the following
feature. The expectation values of a commuting set of
physical observables, 0; (i = 1,2, . . . , X), are macroscopi
cally difterent in these two states. That is, we assume
('It, ~O, ~%', ) and (iIIz~O; %'2) to be measurably different
for all i = 1,2, . . . , X. So, if the Universe is in state ~%', )
or 4'z), that fact can be easily ascertained by measuring
the observables 0;.
But notice that the Wheeler-DeWitt equation is linear

in O'. If ~qt, ) and ~%2) are solutions of (1) then so is
~%') =a~%', )+b~'It~). This is a state which is obtained by
superposing two different states which macroscopically
different values for certain physical variables. There is no
a priori reason why the Universe could not be in this
state. But our experience shows that this is not the case;
the Universe behaves almost classically as far as macro-
scopic observations are concerned. Any sensible model
for quantum gravity should attempt to explain this pecu-
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We discuss the manner in which the gravitational field becomes classical in quantum cosmology.
This involves two steps. First, one must show that the quantum state of the gravitational field be-
comes strongly peaked about a set of classical configurations. Second, one must show that the sys-
tem is in one of a number of states of a relatively permanent nature that have negligible interference
with each other. This second step involves decoherence —destruction of the off-'diagonal terms in
the density matrix, representing interference. To introduce the notion of decoherence, we discuss it
in the context of the quantum theory of measurement, following the environment-induced super-
selection approach of Zurek. We then go on to discuss the application of these ideas to quantum
cosmology. We show, in a simple homogeneous isotropic mode1, that the density matrix of the
Universe will decohere if the long-wavelength modes of an inhomogeneous massless scalar field are
traced out. These modes efFectively act as an environment which continuously "monitors" the scale
factor. The coherence width is very small except in the neighborhood of a classical bounce. This
means that one cannot really say that a classical solution bounces because the notion of classical
spacetime does not apply. The coherence width decreases as the scale factor increases, which has
implications for the arrow of time. We also show, using decoherence arguments, that the WKB
component of the wave function of the Universe which represents expanding universes has negligi-
ble interference with the collapsing component. This justifies the usual assumption that they may be
treated separately.

I. INTRODUCTION

It is one of the undeniable facts of our experience that
the world about us is described by classical laws to a very
high degree of accuracy. In classical mechanics, a system
may be assigned a quite definite state and its evolution is
described in a deterministic manner —given the state of
the system at a particular time one can predict its state at
later time with certainty. And yet, it is believed that the
world is fundamentally quantum mechanical in nature.
Phenomena on all scales up to and including the entire
Universe are supposedly described by quantum mechan-
ics. In quantum mechanics, because superpositions of in-
terfering states are permissable, it is generally not possi-
ble to say that a system is in a definite state. Moreover,
evolution is not deterministic but probabilistic —given
the state of the system at a particular time, one can calcu-
late only the probability of finding it in another state at a
later time.
If quantum theory is to be reconciled with our classical

experience, it is clearly essential to understand the sense
in which, and the extent to which, quantum mechanics
reproduces the effects of classical mechanics. This is an
issue that assumes particular importance in the quantum
theory of measurement. ' There, one describes the
measuring apparatus in quantum-mechanical terms; yet
all such apparata behave in a distinctly classical manner
when the experimenters eye reads the meter.
Early Universe cosmology provides another class of sit-

uations in which the emergence of classical behavior
from quantum mechanics is a process of particular in-

terest. In the infIationary universe scenario, for example,
the classical density fluctuations required for galaxy for-
mation supposedly originate in the quantum fluctuations
of a scalar field, hugely amplified by inflation. This is, in
a sense, an extreme example of a quantum measurement
-process, in that the large-scale structure of the Universe
we see today is a meter which has permanently recorded
the quantum state of the scalar field at early times. The
manner in which this quantum to classical transition
comes about has been discussed by numerous authors. '

A more fundamental situation of interest, and the one
with which this paper is primarily concerned, is quantum
cosmology, in which one attempts to apply quantum
mechanics to closed cosmologies. Since this involves
quantizing the gravitational field, one of the goals of this
endeavor should surely be to predict the conditions under
which the gravitational field may be regarded as classical.
The point of view we will take is that there are at least

two requirements that must be satisfied before a system
may be regarded as classical. The first requirement is
that it must be possible to say that the system is in one of
a number of definite states, where by definite we mean
that the states are of a relatively permanent nature and
that the interference between different states is exceeding-
ly small. This involves the notion of decoherence-
destruction of the off-diagonal terms in the density ma-
trix, which represent interference terms. Note that this
does not preclude the possibility that our knowledge of
the system's state is not precise —we may have only pro-
babilistic information, as in classical statistical mechan-
ics. In fact, this is generally the case. The second re-
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Decoherence without Decoherence

Primordial perturbations : Vacuum State gets squeezed
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=
1

2

∫

d3k[p(k)p∗(k) + k2y(k)y∗(k) +
a′

a
(y(k)p∗(k) + p(k)y∗(k))] (3)

where

p ≡
∂L(y, y′)

∂y′
= y′ −

a′

a
y (4)

and a prime stands for derivation with respect to the conformal time. Here the follow-
ing Fourier transform convention is used: Φ(k) ≡ (2π)−3/2 ∫ Φ(r)e−ikrd3r for functions
as well as for operators. In order to avoid too heavy notations, we will often write
simply y(k), a(k), ... instead of y(k, η), a(k, η), ... though the Fourier transforms are
time-dependent c-functions or time-dependent operators in the Heisenberg represen-
tation. Due to reality of the field y, we have that y(k) = y∗(−k), resp. y†(−k) for
operators. Therefore, any classical field configuration is completely specified by giving
the Fourier transforms in half Fourier space. This may be not true in the quantum
case, and the full Fourier space has to be used if a quantum state of the field is not
invariant under the reflection k → −k. However, for the vacuum initial state that
we will use below, there is no such complication. The Fourier transforms appearing
in (3) satisfy the equation

y′′(k) +

(

k2 −
a′′

a

)

y(k) = 0. (5)

When the field y is quantized, the Hamiltonian becomes

H =
∫ d3k

2
[k(a(k)a†(k) + a†(k)a(k)) + i

a′

a
(a†(k)a†(−k) − a(k)a(−k))]. (6)

The time-dependent (in the Heisenberg representation) operator a(k) appearing in (6)
is defined as usual:

a(k) =
1√
2

(√
k y(k) + i

1√
k
p(k)

)

, (7)

so that

y(k) =
a(k) + a†(−k)√

2k
, p(k) = −i

√

k

2

(

a(k) − a†(−k)
)

. (8)

The canonical commutation relations

[y(x, η) , p(x′, η)] = iδ(3)(x − x′) (9)

imply the following commutation relations

[y(k, η) , p†(k′, η)] = iδ(3)(k−k′), [a(k, η) , a†(k′, η)] = δ(3)(k−k′). (10)

The last piece in the integrand of (6) is responsible for the squeezing. Let us see first
how it affects the time evolution of the system. We have

(

a′(k)
(a†(−k))′

)

=

(

−ik a′

a
a′

a ik

)(

a(k)
a†(−k)

)

. (11)

4

and the momentum modes gk(η), gk(η0) =
√

k
2 ,

p(k) ≡ −i[gk(η)a(k, η0) − g∗
k(η)a†(−k, η0)]

=

√

2

k
gk1(η)p(k, η0) +

√
2k gk2(η)y(k, η0). (18)

The modes fk satisfy the Euler-Lagrange equation (5). Note that

fk =
uk + v∗

k√
2k

, |fk|2 =
1

2k
(cosh 2rk + cos 2ϕk sinh 2rk),

gk =

√

k

2
(uk − v∗

k) = i(f ′
k −

a′

a
fk). (19)

Eqs (14,19) give explicitly the relation between the modes fk which are typically
used in the Heisenberg approach and the squeezing parameters characteristic for the
Schrödinger approach. Also, they can be used to obtain the dynamical equations
satisfied by the squeezing parameters, see Eq. (39) below. The Wronskian condition
for Eq.(5), as well as the commutation relations (10), yield the following equality

gkf
∗
k + g∗

kfk = i(f ′
kf

∗
k − f

′∗
k fk) = 1. (20)

We will be interested, in particular, in the quantum state of the field y defined to be
vacuum at some time η0 in the following way

∀k : a(k, η0)|0, η0〉 = 0. (21)

This state corresponds to a Gaussian state and time evolution preserves its Gaussian-
ity. Indeed it follows from (17,18) that in the Heisenberg representation, the time
independent state |0, η0〉H is an eigenstate of the operator y(k)+ iγ−1

k (η)p(k), namely

{

y(k) + iγ−1
k (η)p(k)

}

|0, η0〉H = 0 , (22)

where the operators y(k), p(k) as well as the function γk depend on time,

γk = k
u∗

k − vk

u∗
k + vk

= k
1 − i sin 2ϕk sinh 2rk

cosh 2rk + cos 2ϕk sinh 2rk
=

1

2|fk|2
− i

F (k)

|fk|2
,

F (k) = &ukvk = &f ∗
kgk =

1

2
sin 2ϕk sinh 2rk . (23)

On the other hand, in the Schrödinger representation the time-evolved state |0, η〉S ≡
S|0, η0〉, where S is the S-matrix, satisfies the equation

Sa(k, η0)S
−1|0, η〉S = 0 (24)

or equivalently
{

y(k, η0) + iγ−1
k (η)p(k, η0)

}

|0, η〉S = 0 . (25)
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possible to find new canonical variables ỹ(k), p̃(k) for which 〈ỹ2〉〈p̃2〉 = 1
4 (even in the

limit |rk| → ∞). However, it is clear from the previous discussion that this objection
is not relevant because the requirement 〈ỹ2〉〈p̃2〉 % 1 for all possible canonically
conjugate variables is not the necessary condition for the semi-classical behaviour.
The only necessary condition is |rk| % 1, or Eq.(56) below for the physical amplitude
of gravitational waves.

In inflationary theories, primordial perturbations are generated by vacuum quan-
tum fluctuations of a real scalar field where the power spectrum of the quantum
field fluctuations is given by |fk|2. Let us consider the very important example of a
massless real scalar field on a (quasi) de Sitter space. In that case we have

√
2kfk = e−ikη(1 −

i

kη
) ,

√

2

k
gk = e−ikη , η ≡ −

1

aH
< 0 . (47)

The modes (47) give also a very accurate description for slowly varying Hubble pa-
rameter H , namely when |Ḣ| ) 3H2. After some straightforward calculation we
get

uk = e−i(kη+δk) cosh rk vk = ei(kη+ π
2
) sinh rk (48)

and sinh rk = 1
2kη → −∞ when kη → 0. The crucial point in (48) is that tan δk = 1

2kη ,
therefore δk will tend to the constant value −π

2 . Hence in the limit kη → 0, the modes
fk are purely real up to a constant phase transformation. Let us give for completeness
the solution for ϕk and θk

ϕk =
π

4
−

1

2
arctan

1

2kη
,

θk = kη + arctan
1

2kη
. (49)

We have finally

F (k) =
1

2
sin 2ϕk sinh 2rk ∼ (2kη)−1 → −∞ (50)

for kη → 0 though sin 2ϕk → 0.

4 Long-wave mode behaviour and decoherence

The physical mechanism producing the Bogolubov transformation and the extreme
squeezing in the Universe is, as well known, the expansion of the Universe (not neces-
sarily inflation) and the existence of the Hubble radius RH ≡ H−1 = a2

a′
. For modes

with kRH ) a, i.e. with wavelengths outside the Hubble radius, the general solu-
tion of Eq. (5) has the following form in terms of the mode functions fk, with y(k)
expressed through fk using (17) [3]:

fk = C1(k)a + C2(k)a
∫ η

∞

dη′

a2(η′)
, gk = O(iC1(k)k2aη) + i

C2(k)

a
. (51)
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Squeezing + Decoherence
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FIG. 3: Marginalized Wigner function W (qk, q−k) =
∫
W (qk,πk, q−k,π−k)dπkdπ−k, for the super-Hubble mode k/(aH) = 0.3.

The left panel corresponds to the two-mode squeezed state while the right panel is for the classical state (82). One can see that
as explained in the text and contrary to the two-mode squeezed state, the classical state is both non-Gaussian and unsqueezed.

is consistent with the results obtained in the previous sec-
tions. In Fig. 3, we display the marginalizedWigner func-
tions W (qk, q−k) for the two-mode squeezed and classical
states.

B. The case of a gaussian state

So far, the discussion was fully generic. We now dis-
cuss whether the three conditions for the validity of a
stochastic classical description mentioned before, namely
W being positive everywhere, W obeying the classical
equation of motion and the validity of Eq. (88) or, equiv-
alently, of Eq. (97), are satisfied for a Gaussian state.
Let us start with the first condition, i.e. the positivity

of the Wigner function. In appendix G, it is shown that,
for Gaussian states, the characteristic function of which
is of the form given by Eq. (55), one has

W (R) =
1

π2
√
det γ

e−RTγ−1R . (102)

In this case, the Wigner function is therefore a (correctly
normalized) Gaussian function with covariance matrix γ
(hence its name). This also means that it is positive at
any time and, thus, indeed satisfies our first condition.
Notice that this is a general feature of Gaussian states
and is completely independent from the fact that we have
squeezing (large or not). For instance, a coherent state
also has a positive Wigner function.
Let us now examine the second condition. In ap-

pendix H, we show that, for any quadratic Hamiltonian,
the Wigner function obeys a classical equation of motion.
Indeed, if one differentiates Eq. (94) with respect to time
and makes use of the Schrödinger equation, one obtains

dW

dη
= {Hk,W}PB , (103)

where the right-hand side of this equation is the Pois-
son bracket between the Hamiltonian Hk and the Wigner
function. The above equation therefore describes a Liou-
ville evolution. This means that if one starts from a col-
lection of pairs of point-like particles [the first one living
in (qk,πk), the other one in (q−k,π−k)] at time η that
mimic the distribution W (η), and if one lets them all
evolve according to the classical Hamilton equations, the
distribution calculated at later time η′ matches W (η′).
We therefore conclude that the second condition is also
met. Again, this is completely independent of whether we
have large squeezing or not and is true for any quadratic
Hamiltonian.

Finally, we come to the third condition, namely the
equality between quantum and stochastic correlators.
Using Eqs. (91) and (96), one has

〈R̂jR̂k〉 = 〈R̃jRk〉stocha =

〈
RjRk +

i

2
Jjk

〉

stocha

(104)

= 〈RjRk〉stocha +
i

2
Jjk. (105)

This implies that for combinations of R̂j and R̂k such
that Jjk = 0, the stochastic distribution reproduces ex-
actly the two-point quantum correlators. The only cases
where Jjk $= 0 correspond to mixed terms and we find

〈qkπk〉stocha = 〈q−kπ−k〉stocha = 〈πkqk〉stocha
= 〈π−kq−k〉stocha = 0. (106)

In terms of the Mukhanov-Sasaki variable and its conju-
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during the radiation or matter stage at t = tk,f is given
by the parameter rk,

rk ≡ ln
a(tk,f)

ak
≡ ln

ak,f
ak

. (11)

We shall see in Sec. III that rk coincides with the squeez-
ing parameter for a quantum state2. For typical cosmo-
logical scales today, rk ∼ 100 and even larger. Physi-
cally this corresponds to an enormous expansion of the
universe, while a given scale k was outside the Hubble
radius. As we shall see below, the ensuing huge amount
of squeezing for the quantum state plays a crucial role in
the quantum-to-classical transition of inflationary quan-
tum fluctuations. It also means that the quantum state
originating from inflation is a very peculiar one.

B. Generation of perturbations

During an inflationary stage, quantum field fluctua-
tions evolve according to the general principles of quan-
tum field theory. Inflation is supposed to take place at an
energy scale where space-time can be described as a clas-
sical curved space-time on which the quantum field fluc-
tuations are defined. The inflaton fluctuations δφ(x, t)
can be treated as a massless scalar field. This is an ex-
cellent approximation when the inflaton field satisfies the
slow-roll conditions (9) and it is even exact when we con-
sider primordial gravitational waves.
It is convenient to consider the rescaled quantity aδφ ≡

y(x, t) and to work with conformal time η =
∫
dt/a(t); a

prime will be used to denote a derivative with respect to
η. The formalism presented here is exact for gravitational
waves, but can be extended in a straightforward way to
the primordial density perturbations.
The quantization of the real perturbation y(x, η) pro-

ceeds with the usual canonical quantization scheme. We
start from the classical Hamiltonian describing the per-
turbations,

H ≡
∫

d3x H(y, p, ∂iy, η)

=
1

2

∫
d3k[p(k)p∗(k) + k2y(k)y∗(k) (12)

+
a′

a
(y(k)p∗(k) + p(k)y∗(k))] , (13)

where p is the momentum conjugate to y,

p ≡
∂L(y, y′)

∂y′
= y′ −

a′

a
y . (14)

In (13) we have introduced the (time-dependent) Fourier
transform y(k, η) of the rescaled fluctuation y(x, η). (We
sometimes keep the dependence on η.) In the Lagrangian
formulation, it obeys the following classical equation of
motion:

y′′(k, η) +

(
k2 −

a′′

a

)
y(k, η) = 0 . (15)

Upon quantization, the Fourier transforms are promoted
to operators on which we impose the canonical commu-
tation relations,

[y(k, η), p†(k′, η)] = iδ(3)(k− k
′) . (16)

(We set ! = 1.) We can write the Hamiltonian operator
in the following way:

H =

∫
d3k

2

[
k
(
a(k)a†(k) + a†(−k)a(−k)

)
+

i
a′

a

(
a†(k)a†(−k)− a(k)a(−k)

)]
. (17)

The time-dependent annihilation operators a(k) (we of-
ten skip the argument η for conciseness) appearing in
(17) are defined as usual,

a(k) =
1√
2

(√
k y(k) +

i√
k
p(k)

)
, (18)

so that

y(k) =
a(k) + a†(−k)√

2k
, (19)

p(k) = −i

√
k

2

(
a(k)− a†(−k)

)
. (20)

It is easily seen from (16) that a and a† satisfy the com-
mutation relations

[a(k, η), a†(k′, η)] = δ(3)(k− k
′) . (21)

Let us consider the time evolution of these operators.
¿From the Hamiltonian (17) we get

(
a′(k)

(a†(−k))′

)
= k

(
−i aH

k
aH
k i

)(
a(k)

a†(−k)

)
. (22)

The second piece of the Hamiltonian (17), which is pro-
portional to a′/a, is responsible for a mixing between
creation and annihilation operators. In the Heisenberg
representation it corresponds to a Bogolubov transfor-
mation; physically it means that particles are produced
in pairs with opposite momenta. For reasons that will
become clear later, this phenomenon is called squeezing
in the Schrödinger picture; the corresponding squeezing
parameter rk turns out to be given by the expression
(11) above. ¿From (22) one can see that mixing of cre-
ation and annihilation operators is efficient when the
off-diagonal terms dominate, in other words, on super-
Hubble scales when aH/k % 1.
Using (20) and (22), one obtains after a little algebra,

y(k, η) ≡ fk(η) ak + f∗
k (η) a

†
−k

, (23)

where ak ≡ a(k, η0), and the field modes fk obey Equa-
tion (15) and satisfy fk(η0) = 1/

√
2k. At the initial time
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Why do cosmological perturbations look classical to us?
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According to the inflationary scenario of cosmology, all structure in the Universe can be traced
back to primordial fluctuations during an accelerated (inflationary) phase of the very early Universe.
A conceptual problem arises due to the fact that the primordial fluctuations are quantum, while the
standard scenario of structure formation deals with classical fluctuations. In this essay we present a
concise summary of the physics describing the quantum-to-classical transition. We first discuss the
observational indistinguishability between classical and quantum correlation functions in the closed
system approach (pragmatic view). We then present the open system approach with environment-
induced decoherence. We finally discuss the question of the fluctuations’ entropy for which, in
principle, the concrete mechanism leading to decoherence possesses observational relevance.
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I. INTRODUCTION

It is often emphasized these days that the field of cos-
mology has entered a golden age. There is no doubt that
the main reason for this statement is the accumulation of
observations of ever increasing accuracy. In this way cos-
mological models aiming to describe the evolution of the
Universe from the Big Bang until today are no longer
purely speculative: their predictions can be tested and
some models can indeed be ruled out.
With the advent of inflationary models, according to

which the Universe underwent a phase of accelerated ex-
pansion at a very early stage, we now have at our disposal
theoretical tools to apprehend such fundamental prob-
lems as the origin of cosmological perturbations and the
eventual formation of large-scale structures like galax-
ies. There are many ways in which inflationary models
address fundamental physical theories. As inflation is
supposed to take place at very high energies in the early
Universe, these models offer a unique window on energy
scales of the order of 1015 GeV. Another intriguing as-
pect of these models is that inflationary perturbations
originate from quantum fluctuations though we do not
see this quantum nature in the Universe nowadays. It is
this aspect of inflationary perturbations that we want to
describe in our essay.
We could, of course, as well consider non-inflationary

cosmological models in which perturbations are assumed
to be classical from the beginning on. However, such
models are plagued with problems of causality as dis-
tant points on the last-scattering surface, about 350.000
years after the Big Bang, were never in contact before.
Hence the impressive homogeneity of the Cosmic Mi-

∗Electronic address: kiefer@thp.uni-koeln.de
†Electronic address: polarski@lpta.univ-montp2.fr

crowave Background (CMB) would have to be put in by
hand in the absence of an inflationary stage. Inflationary
models are thus much more natural – and they can be
observationally tested.

The main part of our essay consists of four parts. We
shall first give in Sec. II a brief review of inflationary
cosmology and its mechanism for the generation of per-
turbations. We then discuss in Sec. III the quantum-
to-classical transition in the closed system approach (we
call it also the pragmatic view) which focusses on the
indistinguishability of quantum expectation values and
classical stochastic averages. Sec. IV presents the suc-
cessful observational predictions which emerge from this
scenario. Sec. V, then, is devoted to environmental deco-
herence. We discuss the problem of the classical variables
(the pointer basis) as well as the entropy of the fluctua-
tions and its observational significance. We end with a
brief conclusion.

II. INFLATION

We give here a brief review of the way in which infla-
tionary models give an elegant solution to many funda-
mental problems occuring in non-inflationary Big-Bang
cosmology, see, for example,1. As we shall see, these
models do also make characteristic predictions, by which
we mean that in the absence of certain observable signa-
tures most if not all inflationary models would be ruled
out. We shall first describe the evolution of the homo-
geneous background for inflation and then turn to the
generation of perturbations.

4

η0, the field modes are deep inside the Hubble radius.
Equation (23) can be written in the suggestive way

y(k, η) =
√
2k fk1(η) yk −

√
2

k
fk2(η) pk , (24)

where yk ≡ y(k, η0) and pk ≡ p(k, η0), fk1 = $fk, fk2 =
%fk. We have in an analogous way momentum modes
gk(η), with gk(η0) =

√
k/2,

p(k) =

√
2

k
gk1(η) pk +

√
2k gk2(η) yk . (25)

We shall now address the first step in understanding why
and to which extent these quantum field modes appear
classically.

III. QUANTUM-TO-CLASSICAL TRANSITION:
THE PRAGMATIC VIEW

In the last section we have described the evolution of
the quantum modes in the Heisenberg representation, in
which operators evolve in time and quantum states do
not. While the quantum-to-classical transition is in gen-
eral formulated in the Schrödinger picture, for the in-
flationary perturbations the Heisenberg picture provides
deep insight, too.
To see this, let us assume that there is a limit in which

fk2 and gk1 (or fk1 and gk2) vanish. Then it is clear from
(24) that the non-commutativity of the operators yk and
pk is no longer relevant. What is the physical meaning of
such a limit? Let us consider a classical stochastic system
where the dynamics is still described by equations of the
form (24), but with now y(k, η0) and p(k, η0) representing
random initial values (c-numbers). If fk2 and gk1 vanish,
we get

p(k, η) ≡ pcl(y(k, η)) =
gk2
fk1

y(k, η) . (26)

This is true for the quantum system (in the operator
sense) and for the classical stochastic system (in the
c-number sense). Therefore, for a given realization of
the perturbation y(k, η), the corresponding momentum
pcl(k, η) is fixed and equal to the classical momentum
corresponding to this value y(k, η). Then the quantum
system is effectively equivalent to the classical random
system, which is an ensemble of classical trajectories with
a certain probability associated to each of them3.
This is, in fact, what happens for the primordial fluctu-

ations. The field modes obey (15), and this equation has,
on super-Hubble scales, solutions that become dominant
and solutions that become negligible (so-called “growing”
and “decaying” modes). Eventually the decaying mode
can be neglected and one in left with the growing mode.
It turns out that fk2 and gk1 are decaying modes, and
one is left with (26).
From the Heisenberg representation it follows that the

operational equivalence with the classical stochastic sys-
tem does not depend on the initial state; this was indeed

shown explicitly for a wide class of initial states (and
extended to some gauge-invariant quantities)4.
We now look at the problem in the Schrödinger rep-

resentation where the state evolves in time, while the
operators are fixed. The initial quantum state of the
perturbations is the vacuum state |0, η0〉 satisfying

ak|0, η0〉 = 0 ∀k . (27)

At later times, due to the creation of particles, the time-
evolved state is annihilated by a more complicated oper-
ator,

{
yk + iγ−1

k (η)pk
}
|0, η〉 = 0 . (28)

The corresponding (Gaussian) wave function reads

Ψ[yk, y
∗
k, η] =

1√
π|fk|2

exp

(
−

|yk|2

2|fk|2
{1− i2F (k)}

)

≡
(
2ΩR(η)

π

)1/4

exp
(
−[ΩR(η) + iΩI(η)]|yk|2

)
. (29)

In (28,29), we have

γk =
1

2|fk|2
[1− 2iF (k)] ,

F (k) = %f∗
kgk = fk1gk2 − fk2gk1 . (30)

At the initial time η = η0, γk(η0) = k, and hence
F (k) = 0; in other words, we have a minimum uncer-
tainty wave function. This is no longer so later, as |F (k)|
becomes very large; the probabilities, however, remain
Gaussian. Another way to exhibit the physical meaning
of our state is to consider the Wigner function, W , which
can be considered as a kind of quasi-probability density
in phase space. For Gaussian wave functions, W has the
property to be positive definite. For the wave function
(29) one obtains

W =
|rk|→∞−→ |Ψ|2 δ(2) (pk − pcl(yk)) . (31)

The dynamics of the fluctuations leads to the large-
squeezing limit |rk| → ∞. One gets a highly elon-
gated ellipse whose large axis is oriented along the line
pk = pcl(yk) and whose width becomes negligible. This is
a direct vizualisation of the classical stochastic behaviour
of our system: the variable yk can take any value with
corresponding probability |Ψ|2, while pk takes the corre-
sponding value pk = pcl(yk). Instead of being essentially
located in phase space around one physical trajectory,
as for coherent states, the system behaves as if it fol-
lowed an infinite number of classical trajectories with a
definite probability to be on each of them. Interestingly,
an analogous situation happens for a free non-relativistic
particle5 possessing an initial Gaussian minimal uncer-
tainty wavefunction. As is well known, F ∝ t and be-
comes very large. At very late times, the position does
no longer depend on the initial position,

x(t) +
p0
m

t . (32)
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x(t) +
p0
m

t . (32)

4

η0, the field modes are deep inside the Hubble radius.
Equation (23) can be written in the suggestive way

y(k, η) =
√
2k fk1(η) yk −

√
2

k
fk2(η) pk , (24)

where yk ≡ y(k, η0) and pk ≡ p(k, η0), fk1 = $fk, fk2 =
%fk. We have in an analogous way momentum modes
gk(η), with gk(η0) =

√
k/2,

p(k) =

√
2

k
gk1(η) pk +

√
2k gk2(η) yk . (25)

We shall now address the first step in understanding why
and to which extent these quantum field modes appear
classically.

III. QUANTUM-TO-CLASSICAL TRANSITION:
THE PRAGMATIC VIEW

In the last section we have described the evolution of
the quantum modes in the Heisenberg representation, in
which operators evolve in time and quantum states do
not. While the quantum-to-classical transition is in gen-
eral formulated in the Schrödinger picture, for the in-
flationary perturbations the Heisenberg picture provides
deep insight, too.
To see this, let us assume that there is a limit in which

fk2 and gk1 (or fk1 and gk2) vanish. Then it is clear from
(24) that the non-commutativity of the operators yk and
pk is no longer relevant. What is the physical meaning of
such a limit? Let us consider a classical stochastic system
where the dynamics is still described by equations of the
form (24), but with now y(k, η0) and p(k, η0) representing
random initial values (c-numbers). If fk2 and gk1 vanish,
we get

p(k, η) ≡ pcl(y(k, η)) =
gk2
fk1

y(k, η) . (26)

This is true for the quantum system (in the operator
sense) and for the classical stochastic system (in the
c-number sense). Therefore, for a given realization of
the perturbation y(k, η), the corresponding momentum
pcl(k, η) is fixed and equal to the classical momentum
corresponding to this value y(k, η). Then the quantum
system is effectively equivalent to the classical random
system, which is an ensemble of classical trajectories with
a certain probability associated to each of them3.
This is, in fact, what happens for the primordial fluctu-

ations. The field modes obey (15), and this equation has,
on super-Hubble scales, solutions that become dominant
and solutions that become negligible (so-called “growing”
and “decaying” modes). Eventually the decaying mode
can be neglected and one in left with the growing mode.
It turns out that fk2 and gk1 are decaying modes, and
one is left with (26).
From the Heisenberg representation it follows that the

operational equivalence with the classical stochastic sys-
tem does not depend on the initial state; this was indeed

shown explicitly for a wide class of initial states (and
extended to some gauge-invariant quantities)4.
We now look at the problem in the Schrödinger rep-

resentation where the state evolves in time, while the
operators are fixed. The initial quantum state of the
perturbations is the vacuum state |0, η0〉 satisfying

ak|0, η0〉 = 0 ∀k . (27)

At later times, due to the creation of particles, the time-
evolved state is annihilated by a more complicated oper-
ator,

{
yk + iγ−1

k (η)pk
}
|0, η〉 = 0 . (28)

The corresponding (Gaussian) wave function reads

Ψ[yk, y
∗
k, η] =

1√
π|fk|2

exp

(
−

|yk|2

2|fk|2
{1− i2F (k)}

)

≡
(
2ΩR(η)

π

)1/4

exp
(
−[ΩR(η) + iΩI(η)]|yk|2

)
. (29)

In (28,29), we have

γk =
1

2|fk|2
[1− 2iF (k)] ,

F (k) = %f∗
kgk = fk1gk2 − fk2gk1 . (30)

At the initial time η = η0, γk(η0) = k, and hence
F (k) = 0; in other words, we have a minimum uncer-
tainty wave function. This is no longer so later, as |F (k)|
becomes very large; the probabilities, however, remain
Gaussian. Another way to exhibit the physical meaning
of our state is to consider the Wigner function, W , which
can be considered as a kind of quasi-probability density
in phase space. For Gaussian wave functions, W has the
property to be positive definite. For the wave function
(29) one obtains

W =
|rk|→∞−→ |Ψ|2 δ(2) (pk − pcl(yk)) . (31)

The dynamics of the fluctuations leads to the large-
squeezing limit |rk| → ∞. One gets a highly elon-
gated ellipse whose large axis is oriented along the line
pk = pcl(yk) and whose width becomes negligible. This is
a direct vizualisation of the classical stochastic behaviour
of our system: the variable yk can take any value with
corresponding probability |Ψ|2, while pk takes the corre-
sponding value pk = pcl(yk). Instead of being essentially
located in phase space around one physical trajectory,
as for coherent states, the system behaves as if it fol-
lowed an infinite number of classical trajectories with a
definite probability to be on each of them. Interestingly,
an analogous situation happens for a free non-relativistic
particle5 possessing an initial Gaussian minimal uncer-
tainty wavefunction. As is well known, F ∝ t and be-
comes very large. At very late times, the position does
no longer depend on the initial position,

x(t) +
p0
m

t . (32)

4

η0, the field modes are deep inside the Hubble radius.
Equation (23) can be written in the suggestive way

y(k, η) =
√
2k fk1(η) yk −

√
2

k
fk2(η) pk , (24)

where yk ≡ y(k, η0) and pk ≡ p(k, η0), fk1 = $fk, fk2 =
%fk. We have in an analogous way momentum modes
gk(η), with gk(η0) =

√
k/2,

p(k) =

√
2

k
gk1(η) pk +

√
2k gk2(η) yk . (25)

We shall now address the first step in understanding why
and to which extent these quantum field modes appear
classically.

III. QUANTUM-TO-CLASSICAL TRANSITION:
THE PRAGMATIC VIEW

In the last section we have described the evolution of
the quantum modes in the Heisenberg representation, in
which operators evolve in time and quantum states do
not. While the quantum-to-classical transition is in gen-
eral formulated in the Schrödinger picture, for the in-
flationary perturbations the Heisenberg picture provides
deep insight, too.
To see this, let us assume that there is a limit in which

fk2 and gk1 (or fk1 and gk2) vanish. Then it is clear from
(24) that the non-commutativity of the operators yk and
pk is no longer relevant. What is the physical meaning of
such a limit? Let us consider a classical stochastic system
where the dynamics is still described by equations of the
form (24), but with now y(k, η0) and p(k, η0) representing
random initial values (c-numbers). If fk2 and gk1 vanish,
we get

p(k, η) ≡ pcl(y(k, η)) =
gk2
fk1

y(k, η) . (26)

This is true for the quantum system (in the operator
sense) and for the classical stochastic system (in the
c-number sense). Therefore, for a given realization of
the perturbation y(k, η), the corresponding momentum
pcl(k, η) is fixed and equal to the classical momentum
corresponding to this value y(k, η). Then the quantum
system is effectively equivalent to the classical random
system, which is an ensemble of classical trajectories with
a certain probability associated to each of them3.
This is, in fact, what happens for the primordial fluctu-

ations. The field modes obey (15), and this equation has,
on super-Hubble scales, solutions that become dominant
and solutions that become negligible (so-called “growing”
and “decaying” modes). Eventually the decaying mode
can be neglected and one in left with the growing mode.
It turns out that fk2 and gk1 are decaying modes, and
one is left with (26).
From the Heisenberg representation it follows that the

operational equivalence with the classical stochastic sys-
tem does not depend on the initial state; this was indeed

shown explicitly for a wide class of initial states (and
extended to some gauge-invariant quantities)4.
We now look at the problem in the Schrödinger rep-

resentation where the state evolves in time, while the
operators are fixed. The initial quantum state of the
perturbations is the vacuum state |0, η0〉 satisfying

ak|0, η0〉 = 0 ∀k . (27)

At later times, due to the creation of particles, the time-
evolved state is annihilated by a more complicated oper-
ator,

{
yk + iγ−1

k (η)pk
}
|0, η〉 = 0 . (28)

The corresponding (Gaussian) wave function reads

Ψ[yk, y
∗
k, η] =

1√
π|fk|2

exp

(
−

|yk|2

2|fk|2
{1− i2F (k)}

)

≡
(
2ΩR(η)

π

)1/4

exp
(
−[ΩR(η) + iΩI(η)]|yk|2

)
. (29)

In (28,29), we have

γk =
1

2|fk|2
[1− 2iF (k)] ,

F (k) = %f∗
kgk = fk1gk2 − fk2gk1 . (30)

At the initial time η = η0, γk(η0) = k, and hence
F (k) = 0; in other words, we have a minimum uncer-
tainty wave function. This is no longer so later, as |F (k)|
becomes very large; the probabilities, however, remain
Gaussian. Another way to exhibit the physical meaning
of our state is to consider the Wigner function, W , which
can be considered as a kind of quasi-probability density
in phase space. For Gaussian wave functions, W has the
property to be positive definite. For the wave function
(29) one obtains

W =
|rk|→∞−→ |Ψ|2 δ(2) (pk − pcl(yk)) . (31)

The dynamics of the fluctuations leads to the large-
squeezing limit |rk| → ∞. One gets a highly elon-
gated ellipse whose large axis is oriented along the line
pk = pcl(yk) and whose width becomes negligible. This is
a direct vizualisation of the classical stochastic behaviour
of our system: the variable yk can take any value with
corresponding probability |Ψ|2, while pk takes the corre-
sponding value pk = pcl(yk). Instead of being essentially
located in phase space around one physical trajectory,
as for coherent states, the system behaves as if it fol-
lowed an infinite number of classical trajectories with a
definite probability to be on each of them. Interestingly,
an analogous situation happens for a free non-relativistic
particle5 possessing an initial Gaussian minimal uncer-
tainty wavefunction. As is well known, F ∝ t and be-
comes very large. At very late times, the position does
no longer depend on the initial position,

x(t) +
p0
m

t . (32)

             Quantum Character  becomes irrelevant

If (f1,g2) or (f2,g1) pair diminish

Note the similar structure of Eqs (22,25). In the coordinate Schrödinger represen-
tation, p(k, η0) = −i∂/∂y(−k, η0). Hence the state |0, η0〉S has a Gaussian wave
functional in this representation consisting of the product of

Ψ[y(k, η0), y(−k, η0)] = Nk exp

(

−
y(k, η0)y(−k, η0)

2|fk|2
{1 − i2F (k)}

)

= Nk exp

(

−
|y(k, η0)|2

2|fk|2
{1 − i2F (k)}

)

(26)

for each pair k,−k where Nk is a normalization coefficient. The time dependence
of Ψ is through fk, F (k), and Nk. This structure of the wave functional just re-
flects the fact that we get a two-mode squeezed state. The corresponding probability
P[y(k, η0), y(−k, η0)] is given by

P[y(k, η0), y(−k, η0)] ∝ exp

(

−
|y(k, η0)|2

|fk|2

)

. (27)

At η = η0, we have γk(η0) = k or equivalently F (k) = 0, in other words we have a
minimum uncertainty wave function.

3 Transition to semiclassical behaviour

Let us first consider the transition in the Heisenberg approach and take the formal
limit ”h̄ → 0” keeping the rms amplitude |fk|, when expressed in physical units,
fixed. Since the right-hand sides of the commutation relation (9) and of Eqs (13,20)
are proportional to h̄ in physical units and do not depend on |fk|, they may be
approximately replaced by 0 in this limit. In other words, |uk| ≈ |vk| & 1, |fk| &
1/
√

2k, |gk| &
√

k
2 in natural units in the quasi- classical limit. Then it follows from

Eq.(20) with 0 in the right-hand side that f ∗
k = ckfk, where ck is a time-independent

constant. As a result, it is possible to make fk real for all times by a time-independent
phase rotation, viz. fk → fk exp(− i

2argck). On the other hand, gk is purely imaginary
in this limit.

A further consequence is that all variables y(k) and p(k) become mutually com-
muting. However, we still cannot ascribe any definite numerical values to them, in
contrast with coherent states in the quasi-classical limit; there is no Bose condensate.
The correct way to put it is that field modes become equivalent to stochastic c-number
functions of time with some probability distribution ρ(y(k)y(−k)) ≡ ρ(|y(k)|2) for
each pair of modes k,−k in the following sense

H〈0, η0|G(y(k))G†(y(k))|0, η0〉H =
∫ ∫

dy1(k)dy2(k)ρ(|y(k)|)|G(y(k))|2 (28)

for any arbitrary function G (y(k)) and k *= 0, (for k = 0 the proof is a little bit
different). Here we assume for simplicity of notation the k spectrum to be discrete,
this can be achieved e.g. by formally making the T 3 identification of space with three
topological comoving scales much larger than all scales of interest. By considering
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Quantum Entanglement : Bell’s test

4 Cosmological violation of BMK inequalities

According to Eq. (2.7), we naively expect the violation of the BMK inequalities increases with

the number of modes k to measure. However, the upper bound in Eq. (2.7) is only attained

by maximally entangled states. Since the cosmological initial states are not maximally

entangled states, in this section, we see how much the Bunch-Davies vacuum and the non-

Bunch-Davies vacuum violate the BMK inequalities.

4.1 Two-mode squeezed state

Let us check the BMK inequalities for the Bunch-Davies vacuum expressed by a two-mode

squeezed state Eq. (3.14). Here, we use the pseudospin operators correspond to measuring

the parity along various axes in the Hilbert space [12]. The pseudospin operators S have

eigenvalues ±1 and the inner product with a unit vector n is expressed as

n · S = Sz cos ✓ + sin ✓
�
ei'S� + e�i'S+

�
, (4.1)

where the unit vector is chosen as n = (sin ✓ cos' , sin ✓ sin' , cos ✓) and (n · S)2 = I. Since

the pseudospin operators act on |2n + 1i and |2ni di↵erently, it is convenient to divide the

states n into even and odd parity for computation. Focusing on the Hilbert space for a single

Fourier mode k, Hk, Eq. (3.22) is written by

|0ink i ⌘
1X

n=0

tanhn rk
cosh rk

|nout
k i ⌦ |nout

�ki

=
1X

n=0

tanh2n rk
cosh rk

|2nout
k i ⌦ |2nout

�ki+
1X

n=0

tanh2n+1 rk
cosh rk

| (2n+ 1)outk i ⌦ | (2n+ 1)out�ki .(4.2)

For the two-mode squeezed state, we need two sets of non-commuting pseudospin operators

as demonstrated in Eq. (2.1). Since we consider two unit vectors for nonprimed operators,

we need a plane containing those two vectors. Thus, without any loss of generality, we can

take ' = 0 (x, z-plane), then Eq. (4.1) is simplified as

n · S = Sz cos ✓ + Sx sin ✓ . (4.3)

By using Eq. (2.5), the expectation value of Bell operator in the Bunch-Davies vacuum is

then written by the psedospin operators as

h0ink |B2|0ink i =
1

2
[E (✓1 , ✓2) + E (✓1 , ✓20) + E (✓10 , ✓2)� E (✓10 , ✓20) ] , (4.4)

where O1 ⌘ n1 · S, O2 ⌘ n2 · S, O0
1 ⌘ n0

1 · S, O0
2 ⌘ n0

2 · S in Eq. (2.5). And E (✓1 , ✓2) is

E (✓1 , ✓2) = h0ink | (Sz cos ✓1 + Sx sin ✓1)⌦ (Sz cos ✓2 + Sx sin ✓2) |0ink i ,

= cos ✓1 cos ✓2 + tanh 2rk sin ✓1 sin ✓2 . (4.5)
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Here, we used Eqs. (2.14) and (4.2). Choosing ✓1 = 0 , ✓10 = ⇡/2 , ✓2 = �✓20 we get

h0ink |B2|0ink i = cos ✓2 + tanh 2rk sin ✓2 . (4.6)

For ✓2 = tan�1 tanh 2rk, we get the maximal violation which has the extra
p
2 factor:

h0ink |B2|0ink i =
p
1 + tanh2 2rk 

p
2 . (4.7)

where the maximal value is obtained in the infinite squeezing limit rk ! 1. We reproduced

Bell inequality of a pair of spins in section 2.1 by using continuous quantum variables [12] and

found that the Bell inequality is maximally violated by the Bunch-Davies vacuum according

to Eq. (2.7) with n = 2. As we see in section.2.3, this two-mode squeezed state corresponds

to the case of N = 2, L = 1, K1 = 0. Thus we get hB2i2+hB0
2i2  2. Although we focused on

a single Fourier mode k (a pair of spins or a two-partite system), the Bunch-Davies vacuum

consists of infinite products of k as in Eq. (3.14). So, if we increase the number of modes

to measure, say m-pairs (m = 2, 3, 4 · · · ), it appears the violation increases by Eq. (2.7)

with n = 2m. However, this case corresponds to N = 2m, L = m, K1 = 0, which holds

N � 2L = 0 in the classification Eq. (2.11). Thus, the violation of BMK inequalities does

not increase anymore.

4.2 Four-mode squeezed state

Let us see the BMK inequalities for a non-Bunch-Davies vacuum expressed by the four-mode

squeezed state Eq. (3.23) next. In this case, we can expect the violation increases with the

number of modes k to measure because the four-mode squeezed state realizes N = 4m,

L = m, K1 = 0 and then N � 2L 6= 0 in the classification Eq. (2.11).

To obtain the Bell operator B4, we use the Mermin-Klyshiko operator Eq. (2.4) recursively

to find3

4B4 = �O1 ⌦O2 ⌦O3 ⌦O4 �O0
1 ⌦O0

2 ⌦O0
3 ⌦O0

4 +O1 ⌦O2 ⌦O3 ⌦O0
4

+O1 ⌦O2 ⌦O0
3 ⌦O4 +O1 ⌦O0

2 ⌦O3 ⌦O4 +O0
1 ⌦O2 ⌦O3 ⌦O4

+O1 ⌦O2 ⌦O0
3 ⌦O0

4 +O1 ⌦O0
2 ⌦O3 ⌦O0

4 +O0
1 ⌦O2 ⌦O3 ⌦O0

4

+O1 ⌦O0
2 ⌦O0

3 ⌦O4 +O0
1 ⌦O2 ⌦O0

3 ⌦O4 +O0
1 ⌦O0

2 ⌦O3 ⌦O4

�O1 ⌦O0
2 ⌦O0

3 ⌦O0
4 �O0

1 ⌦O2 ⌦O0
3 ⌦O0

4 �O0
1 ⌦O0

2 ⌦O3 ⌦O0
4

�O0
1 ⌦O0

2 ⌦O0
3 ⌦O4 , (4.8)

3
We cannot use Eq. (2.8) with n = 4, p = 2 to calculate the expectation value of B4 in the four-mode

squeezed state because in this formula, the expectation values of Bn�p and Bp are supposed to be unentangled.

Thus we use Eq. (4.8) which is derived recursively by using Eq. (2.4).
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θ

B4

Figure 2: Plot of the violation of the BMK inequalities. The blue line is for B4. Ak and
Bk have been set to

p
0.95 and

p
0.05 and rk = 1.7. The orange line is the classical upper

bound and the green line is
p
2 which is the quantum upper bound for the Bunch-Davies

vacuum. The part exceeding the green line grows exponentially as the number of modes to
measure increases according to Eq. (4.19). Note that the plot is parametrized by only one
parameter ✓.

4.3 Infinite violation of BMK inequalities

In the previous subsection, we first focused on the Hilbert space for a single Fourier mode k,

Hk, and extended the analysis to Hk1 ⌦Hk2 and Hk1 ⌦Hk2 ⌦Hk3 . However, the four-mode

squeezed state consists of infinite products of k as in Eq. (3.22). Let’s see the upper bound

of the quadratic form of Mermin-Klyshko inequalities when we increase the number of modes

k to measure.

If we plug the Mermin-Klyshko operators Eq. (2.8) into the quadratic form of Bell in-

equality Eq. (2.10), we obtain

MN = hBNi2 + hB0
N
i2

=
1

2

�
hBN�pi2 + hB0

N�p
i2
� �

hBpi2 + hB0
p
i2
�

=
1

2
MN�p Mp , (4.17)

where we assumed that there is no correlation between BN and BN�p, that is, hBNBN�pi2 =
hBNi2hBN�pi2.

For a four-mode squeezed state, we take N = 4n (n = 1, 2, 3 · · · ) where n corresponds to

the number of modes k to measure and p = 4, then we have

M4n =
1

2
M4n�4 M4 =

✓
1

2

◆n�1

M4n�4(n�1) Mn�1
4 =

✓
1

2

◆n�1

Mn

4 , (4.18)
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Kanno, Soda; Phys. Rev. D (2017)

! Yet Not classical at heart  

6

Let us now calculate the quantum discord of inflation-
ary perturbations. For the two-mode squeezed state (28),
the density matrix is given by

ρ̂(k,−k) =
1

cosh2 rk

∞∑

n,n′=0

e2i(n−n′)ϕk(−1)n+n′

tanhn+n′

rk|nk, n−k〉〈n′
k, n

′
−k| . (40)

The reduced density matrix ρ̂(k) is obtained from the full
density matrix by tracing out degrees of freedom associ-
ated to “−k”. One has

ρ̂(k) =
∞∑

n=0

〈n−k|ρ̂(k,−k)|n−k〉 (41)

=
1

cosh2 rk

∞∑

n=0

tanh2n rk|nk〉〈nk|, (42)

which is a thermal state with inverse temperature βk =
− ln tanh2 rk. We have of course a similar equation for
ρ̂(−k) where |nk〉〈nk| is replaced by |n−k〉〈n−k|.
Our next move is to calculate the entropy of the dif-

ferent density matrices appearing in the expression of
the discord. As can be shown explicitly, the entropy of
ρ̂(k,−k) vanishes since we deal with a pure state. Since
ρ̂(k) represents a thermal state, its entropy is simply
given by [80]

S [ρ̂(k)] = (1 + 〈n̂k〉) log2 (1 + 〈n̂k〉)− 〈n̂k〉 log2〈n̂k〉,
(43)

where 〈n̂k〉 = sinh2 rk is the mean occupation number.
Obviously, this formula is also valid for ρ̂(−k). Finally,

the quantity S
[
ρ̂(k; Π̂j)

]
remains to be calculated. In

Appendix A, we show that ρ̂(k; Π̂j) is in fact a pure state
and, consequently, its entropy is zero. Therefore, it fol-
lows that the discord is given by

δ (k,−k) = S [ρ̂(−k)] = cosh2 rk log2
(
cosh2 rk

)

− sinh2 rk log2
(
sinh2 rk

)
. (44)

The corresponding function is displayed in Fig. 1. One
can see that except for rk = 0, the discord is not zero,
and, therefore, the quantum state of the perturbations is
not classical. In fact, rk = 0 corresponds to a coherent
state [81, 82]. Such states are often called “quasi classi-
cal” and are known to be the “most classical” states since
they follow the classical trajectory in phase space, with
minimal spread. In the strong squeezing limit however,
rk → ∞, we have

δ (k,−k) =
2

ln 2
rk − 2 +

1

ln 2
+O

(
e−2rk

)
. (45)

Let us recall that for the modes within the CMB window,
at the end of inflation, rk ∼ 50. We conclude that the
CMB is placed in a state which is “very quantum.” This
means that it is certainly impossible to reproduce all the
correlation functions in a classical picture as we are going

0.0 0.2 0.4 0.6 0.8 1.0 1.2
rk

0.0

0.5

1.0

1.5

2.0

2.5

3.0

δ
(k
,−

k
)

FIG. 1: Quantum discord δ (k,−k) of cosmological scalar per-
turbations during inflation, as a function of the squeezing pa-
rameter rk. The solid blue line is the result (44) while the
dotted green line is the large squeezing expansion (45).

to demonstrate explicitly in the following section. In fact,
the results of this section show that, strictly speaking,
there is no transition to a classical behavior since the
discord only grows. But we will also see that the situation
is subtle and that, nevertheless, a classical treatment of
the perturbations can partially be employed, in a sense
that will be carefully discussed in the following.
Let us also mention that quantum discord is always de-

fined relatively to a given division into two subsystems.
For example, in what precedes, the quantum discord was
shown to be large for the bipartite system E = Ek ⊗ E−k.
A priori, with a different division, one would have ob-
tained a different result. For example, let us write the
Hamiltonian (11) in terms of the real and imaginary (or
Hermitian and anti-Hermitian) parts of vk and pk, de-
noted vRk , v

I
k, p

R
k , p

I
k, and defined by vk = (vRk + ivIk)/

√
2

and pk = (pRk + ipIk)/
√
2. Notice that the relation

v†k = v−k implies that vRk = vR−k and vIk = −vI−k. One
has

H =

∫

R3+

d3k

[
1

2

(
pRk
)2

+
k

2

(
vRk
)2

+
z′

z
vRk p

R
k

]

+

∫

R3+

d3k

[
1

2

(
pIk
)2

+
k

2

(
vIk
)2

+
z′

z
vIkp

I
k

]
. (46)

One can see that the “real” and “imaginary” sectors are
in fact independent. This suggests that the quantum dis-
cord calculated with respect to E = ER⊗EI should vanish.
It is therefore interesting to calculate the quantum dis-
cord calculated with respect to an arbitrary subdivision
of our system E = E1⊗E2. Starting from ĉk and ĉ−k, the
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The reduced density matrix ρ̂(k) is obtained from the full
density matrix by tracing out degrees of freedom associ-
ated to “−k”. One has

ρ̂(k) =
∞∑

n=0

〈n−k|ρ̂(k,−k)|n−k〉 (41)

=
1

cosh2 rk

∞∑

n=0

tanh2n rk|nk〉〈nk|, (42)

which is a thermal state with inverse temperature βk =
− ln tanh2 rk. We have of course a similar equation for
ρ̂(−k) where |nk〉〈nk| is replaced by |n−k〉〈n−k|.
Our next move is to calculate the entropy of the dif-

ferent density matrices appearing in the expression of
the discord. As can be shown explicitly, the entropy of
ρ̂(k,−k) vanishes since we deal with a pure state. Since
ρ̂(k) represents a thermal state, its entropy is simply
given by [80]

S [ρ̂(k)] = (1 + 〈n̂k〉) log2 (1 + 〈n̂k〉)− 〈n̂k〉 log2〈n̂k〉,
(43)

where 〈n̂k〉 = sinh2 rk is the mean occupation number.
Obviously, this formula is also valid for ρ̂(−k). Finally,

the quantity S
[
ρ̂(k; Π̂j)

]
remains to be calculated. In

Appendix A, we show that ρ̂(k; Π̂j) is in fact a pure state
and, consequently, its entropy is zero. Therefore, it fol-
lows that the discord is given by

δ (k,−k) = S [ρ̂(−k)] = cosh2 rk log2
(
cosh2 rk

)

− sinh2 rk log2
(
sinh2 rk

)
. (44)

The corresponding function is displayed in Fig. 1. One
can see that except for rk = 0, the discord is not zero,
and, therefore, the quantum state of the perturbations is
not classical. In fact, rk = 0 corresponds to a coherent
state [81, 82]. Such states are often called “quasi classi-
cal” and are known to be the “most classical” states since
they follow the classical trajectory in phase space, with
minimal spread. In the strong squeezing limit however,
rk → ∞, we have

δ (k,−k) =
2

ln 2
rk − 2 +

1

ln 2
+O

(
e−2rk

)
. (45)

Let us recall that for the modes within the CMB window,
at the end of inflation, rk ∼ 50. We conclude that the
CMB is placed in a state which is “very quantum.” This
means that it is certainly impossible to reproduce all the
correlation functions in a classical picture as we are going
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FIG. 1: Quantum discord δ (k,−k) of cosmological scalar per-
turbations during inflation, as a function of the squeezing pa-
rameter rk. The solid blue line is the result (44) while the
dotted green line is the large squeezing expansion (45).

to demonstrate explicitly in the following section. In fact,
the results of this section show that, strictly speaking,
there is no transition to a classical behavior since the
discord only grows. But we will also see that the situation
is subtle and that, nevertheless, a classical treatment of
the perturbations can partially be employed, in a sense
that will be carefully discussed in the following.
Let us also mention that quantum discord is always de-

fined relatively to a given division into two subsystems.
For example, in what precedes, the quantum discord was
shown to be large for the bipartite system E = Ek ⊗ E−k.
A priori, with a different division, one would have ob-
tained a different result. For example, let us write the
Hamiltonian (11) in terms of the real and imaginary (or
Hermitian and anti-Hermitian) parts of vk and pk, de-
noted vRk , v

I
k, p

R
k , p

I
k, and defined by vk = (vRk + ivIk)/

√
2

and pk = (pRk + ipIk)/
√
2. Notice that the relation

v†k = v−k implies that vRk = vR−k and vIk = −vI−k. One
has

H =

∫

R3+

d3k

[
1

2

(
pRk
)2

+
k

2

(
vRk
)2

+
z′

z
vRk p

R
k

]

+

∫

R3+

d3k

[
1

2

(
pIk
)2

+
k

2

(
vIk
)2

+
z′

z
vIkp

I
k

]
. (46)

One can see that the “real” and “imaginary” sectors are
in fact independent. This suggests that the quantum dis-
cord calculated with respect to E = ER⊗EI should vanish.
It is therefore interesting to calculate the quantum dis-
cord calculated with respect to an arbitrary subdivision
of our system E = E1⊗E2. Starting from ĉk and ĉ−k, the
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One can see that the “real” and “imaginary” sectors are
in fact independent. This suggests that the quantum dis-
cord calculated with respect to E = ER⊗EI should vanish.
It is therefore interesting to calculate the quantum dis-
cord calculated with respect to an arbitrary subdivision
of our system E = E1⊗E2. Starting from ĉk and ĉ−k, the
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One can see that the “real” and “imaginary” sectors are
in fact independent. This suggests that the quantum dis-
cord calculated with respect to E = ER⊗EI should vanish.
It is therefore interesting to calculate the quantum dis-
cord calculated with respect to an arbitrary subdivision
of our system E = E1⊗E2. Starting from ĉk and ĉ−k, the
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An important property of this stochastic tensor is that it is covariantly conserved in the back-
ground spacetime ∇aξab[g;x) = 0. In fact, as a consequence of the conservation of T̂R

ab[g] one can see
that ∇a

xNabcd(x, y) = 0. Taking the divergence in Eq. (3.13) one can then show that 〈∇aξab〉s = 0
and 〈∇a

xξab(x)ξcd(y)〉s = 0 so that ∇aξab is deterministic and represents with certainty the zero
vector field in M.

For a conformal field, i.e., a field whose classical action is conformally invariant, ξab is traceless:
gabξab[g;x) = 0; so that, for a conformal matter field the stochastic source gives no correction to the
trace anomaly. In fact, from the trace anomaly result which states that gabT̂R

ab[g] is, in this case, a
local c-number functional of gab times the identity operator, we have that gab(x)Nabcd[g;x, y) = 0.
It then follows from Eq. (3.13) that 〈gabξab〉s = 0 and 〈gab(x)ξab(x)ξcd(y)〉s = 0; an alternative
proof based on the point-separation method is given in Ref. [7, 8], see also section 5.

All these properties make it quite natural to incorporate into the Einstein equations the stress-
energy fluctuations by using the stochastic tensor ξab[g;x) as the source of the metric perturbations.
Thus we will write the following equation.

Gab[g+h]+Λ(gab+hab)− 2(αAab + βBab)[g+h]=8πG
(

〈T̂R
ab[g+h]〉+ξab[g]

)

. (3.14)

This equation is in the form of a (semiclassical) Einstein-Langevin equation, it is a dynamical
equation for the metric perturbation hab to linear order. It describes the back-reaction of the
metric to the quantum fluctuations of the stress-energy tensor of matter fields, and gives a first
order extension to semiclassical gravity as described by the semiclassical Einstein equation (3.7).

Note that we refer to the Einstein-Langevin equation as a first order extension to semiclassical
Einstein equation of semiclassical gravity and the lowest level representation of stochastic gravity.
However, stochastic gravity has a much broader meaning, it refers to the range of theories based on
second and higher order correlation functions. Noise can be defined in effectively open systems (e.g.
correlation noise [29] in the Schwinger-Dyson equation hierarchy) to some degree but one should
not expect the Langevin form to prevail. In this sense we say stochastic gravity is the intermediate
theory between semiclassical gravity (a mean field theory based on the expectation values of the
energy momentum tensor of quantum fields) and quantum gravity (the full hierarchy of correlation
functions retaining complete quantum coherence [2, 170].

The renormalization of the operator T̂ab[g + h] is carried out exactly as in the previous case,
now in the perturbed metric gab + hab. Note that the stochastic source ξab[g;x) is not dynamical,
it is independent of hab since it describes the fluctuations of the stress tensor on the semiclassical
background gab.

An important property of the Einstein-Langevin equation is that it is gauge invariant under the
change of hab by h′ab = hab +∇aζb +∇bζa, where ζa is a stochastic vector field on the background
manifold M. Note that a tensor such as Rab[g+h], transforms as Rab[g+h′] = Rab[g+h]+LζRab[g]
to linear order in the perturbations, where Lζ is the Lie derivative with respect to ζa. Now, let
us write the source tensors in Eqs. (3.14) and (3.7) to the left-hand sides of these equations. If we
substitute h by h′ in this new version of Eq. (3.14), we get the same expression, with h instead of h′,
plus the Lie derivative of the combination of tensors which appear on the left-hand side of the new
Eq. (3.7). This last combination vanishes when Eq. (3.7) is satisfied, i.e., when the background
metric gab is a solution of semiclassical gravity.

From the statistical average of equation (3.14) we have that gab + 〈hab〉s must be a solution of
the semiclassical Einstein equation linearized around the background gab; this solution has been
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Einstein equations with respect to quantum metric fluctuations. The two-point correlations for
the metric perturbations can be described in the framework of stochastic gravity, which is closely
related to the quantum theory of gravity interacting with N matter fields, to leading order in a
1/N expansion. We will describe these developments in the following sections.

3.2 Stochastic gravity

The purpose of stochastic gravity is to extend the semiclassical theory to account for these fluctua-
tions in a self-consistent way. A physical observable that describes these fluctuations to lowest order
is the noise kernel bi-tensor, which is defined through the two-point correlation of the stress-energy
operator as

Nabcd[g;x, y) =
1

2
〈{t̂ab[g;x), t̂cd[g; y)}〉, (3.11)

where the curly brackets mean anticommutator, and where

t̂ab[g;x) ≡ T̂ab[g;x)− 〈T̂ab[g;x)〉. (3.12)

This bi-tensor can also be written Nab,c′d′ [g;x, y), or Nab,c′d′(x, y) as we do in section 5, to emphasize
that it is a tensor with respect to the first two indices at the point x and a tensor with respect to
the last two indices at the point y, but we shall not follow this notation here. The noise kernel
is defined in terms of the unrenormalized stress-tensor operator T̂ab[g;x) on a given background
metric gab, thus a regulator is implicitly assumed on the right-hand side of Eq. (3.11). However,
for a linear quantum field the above kernel – the expectation function of a bi-tensor – is free of
ultraviolet divergences because the regularized Tab[g;x) differs from the renormalized TR

ab[g;x) by
the identity operator times some tensor counterterms, see Eq. (3.6), so that in the subtraction
(3.12) the counterterms cancel. Consequently the ultraviolet behavior of 〈T̂ab(x)T̂cd(y)〉 is the
same as that of 〈T̂ab(x)〉〈T̂cd(y)〉, and T̂ab can be replaced by the renormalized operator T̂R

ab in
Eq. (3.11); an alternative proof of this result is given in Ref. [7, 8]. The noise kernel should
be thought of as a distribution function, the limit of coincidence points has meaning only in the
sense of distributions. The bi-tensor Nabcd[g;x, y), or Nabcd(x, y) for short, is real and positive
semi-definite, as a consequence of T̂R

ab being self-adjoint. A simple proof is given in Ref. [4].
Once the fluctuations of the stress-energy operator have been characterized we can perturba-

tively extend the semiclassical theory to account for such fluctuations. Thus we will assume that
the background spacetime metric gab is a solution of the semiclassical Einstein Eqs. (3.7) and we
will write the new metric for the extended theory as gab + hab, where we will assume that hab is a
perturbation to the background solution. The renormalized stress-energy operator and the state of
the quantum field may now be denoted by T̂R

ab[g + h] and |ψ[g + h]〉, respectively, and 〈T̂R
ab[g + h]〉

will be the corresponding expectation value.
Let us now introduce a Gaussian stochastic tensor field ξab[g;x) defined by the following corre-

lators:
〈ξab[g;x)〉s = 0, 〈ξab[g;x)ξcd[g; y)〉s = Nabcd[g;x, y), (3.13)

where 〈. . .〉s means statistical average. The symmetry and positive semi-definite property of the
noise kernel guarantees that the stochastic field tensor ξab[g, x), or ξab(x) for short, just introduced
is well defined. Note that this stochastic tensor captures only partially the quantum nature of the
fluctuations of the stress-energy operator since it assumes that cumulants of higher order are zero.
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where ! = ∇a∇a and Gab is the Einstein tensor. With the notation T ab[g,φ] we explicitly indicate
that the stress-energy tensor is a functional of the metric gab and the field φ.

The next step is to define a stress-energy tensor operator T̂ ab[g;x). Naively one would replace
the classical field φ[g;x) in the above functional by the quantum operator φ̂[g;x), but this procedure
involves taking the product of two distributions at the same spacetime point. This is ill-defined
and we need a regularization procedure. There are several regularization methods which one may
use, one is the point-splitting or point-separation regularization method [188, 189] in which one
introduces a point y in a neighborhood of the point x and then uses as the regulator the vector
tangent at the point x of the geodesic joining x and y; this method is discussed for instance in
Refs. [117, 7, 8] and in section 5. Another well known method is dimensional regularization in
which one works in arbitrary n dimensions, where n is not necessarily an integer, and then uses
as the regulator the parameter ε = n − 4; this method is implicitly used in this section. The
regularized stress-energy operator using the Weyl ordering prescription, i.e. symmetrical ordering,
can be written as

T̂ ab[g] =
1

2
{∇aφ̂[g] , ∇bφ̂[g]} +Dab[g] φ̂2[g], (3.4)

where Dab[g] is the differential operator:

Dab ≡ (ξ − 1/4) gab!+ ξ
(

Rab −∇a∇b
)

. (3.5)

Note that if dimensional regularization is used, the field operator φ̂[g;x) propagates in a n-
dimensional spacetime. Once the regularization prescription has been introduced a regularized
and renormalized stress-energy operator T̂R

ab[g;x) may be defined as

T̂R
ab[g;x) = T̂ab[g;x) + FC

ab[g;x)Î , (3.6)

which differs from the regularized T̂ab[g;x) by the identity operator times some tensor counterterms
FC
ab[g;x), which depend on the regulator and are local functionals of the metric, see Ref. [6] for

details. The field states can be chosen in such a way that for any pair of physically acceptable
states, i.e., Hadamard states in the sense of Ref. [34], |ψ〉, and |ϕ〉 the matrix element 〈ψ|TR

ab|ϕ〉,
defined as the limit when the regulator takes the physical value, is finite and satisfies Wald’s axioms
[33, 190]. These counterterms can be extracted from the singular part of a Schwinger-DeWitt series
[33, 188, 189, 216]. The choice of these counterterms is not unique but this ambiguity can be
absorbed into the renormalized coupling constants which appear in the equations of motion for the
gravitational field.

The semiclassical Einstein equation for the metric gab can then be written as

Gab[g] + Λgab − 2(αAab + βBab)[g] = 8πG〈T̂R
ab[g]〉, (3.7)

where 〈T̂R
ab[g]〉 is the expectation value of the operator T̂R

ab[g, x) after the regulator takes the phys-
ical value in some physically acceptable state of the field on (M, gab). Note that both the stress
tensor and the quantum state are functionals of the metric, hence the notation. The parameters G,
Λ, α and β are the renormalized coupling constants, respectively, the gravitational constant, the
cosmological constant and two dimensionless coupling constants which are zero in the classical Ein-
stein equation. These constants must be understood as the result of “dressing” the bare constants
which appear in the classical action before renormalization. The values of these constants must be
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〈{t̂ab[g;x), t̂cd[g; y)}〉, (3.11)

where the curly brackets mean anticommutator, and where

t̂ab[g;x) ≡ T̂ab[g;x)− 〈T̂ab[g;x)〉. (3.12)

This bi-tensor can also be written Nab,c′d′ [g;x, y), or Nab,c′d′(x, y) as we do in section 5, to emphasize
that it is a tensor with respect to the first two indices at the point x and a tensor with respect to
the last two indices at the point y, but we shall not follow this notation here. The noise kernel
is defined in terms of the unrenormalized stress-tensor operator T̂ab[g;x) on a given background
metric gab, thus a regulator is implicitly assumed on the right-hand side of Eq. (3.11). However,
for a linear quantum field the above kernel – the expectation function of a bi-tensor – is free of
ultraviolet divergences because the regularized Tab[g;x) differs from the renormalized TR

ab[g;x) by
the identity operator times some tensor counterterms, see Eq. (3.6), so that in the subtraction
(3.12) the counterterms cancel. Consequently the ultraviolet behavior of 〈T̂ab(x)T̂cd(y)〉 is the
same as that of 〈T̂ab(x)〉〈T̂cd(y)〉, and T̂ab can be replaced by the renormalized operator T̂R

ab in
Eq. (3.11); an alternative proof of this result is given in Ref. [7, 8]. The noise kernel should
be thought of as a distribution function, the limit of coincidence points has meaning only in the
sense of distributions. The bi-tensor Nabcd[g;x, y), or Nabcd(x, y) for short, is real and positive
semi-definite, as a consequence of T̂R

ab being self-adjoint. A simple proof is given in Ref. [4].
Once the fluctuations of the stress-energy operator have been characterized we can perturba-

tively extend the semiclassical theory to account for such fluctuations. Thus we will assume that
the background spacetime metric gab is a solution of the semiclassical Einstein Eqs. (3.7) and we
will write the new metric for the extended theory as gab + hab, where we will assume that hab is a
perturbation to the background solution. The renormalized stress-energy operator and the state of
the quantum field may now be denoted by T̂R

ab[g + h] and |ψ[g + h]〉, respectively, and 〈T̂R
ab[g + h]〉

will be the corresponding expectation value.
Let us now introduce a Gaussian stochastic tensor field ξab[g;x) defined by the following corre-

lators:
〈ξab[g;x)〉s = 0, 〈ξab[g;x)ξcd[g; y)〉s = Nabcd[g;x, y), (3.13)

where 〈. . .〉s means statistical average. The symmetry and positive semi-definite property of the
noise kernel guarantees that the stochastic field tensor ξab[g, x), or ξab(x) for short, just introduced
is well defined. Note that this stochastic tensor captures only partially the quantum nature of the
fluctuations of the stress-energy operator since it assumes that cumulants of higher order are zero.
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Noise Kernel in FRW

The correlators of the fields decide !

Point Splitting Technique
4

• One can write

T̂ab(x) = lim
y!x

Pab(x , y)�̂(x)�̂(y) , (8)

where

Pab(x , y) =
�
�c
(a
�d
b)
�1

2
⌘ab⌘

cd
�
rx

cr
y

d
�1

2

⇣a(⌘) + a(⌘0)

2

⌘2

⌘abm
2 .

(9)

• Using Wick’s theorem, one obtains

Nabcd(x , x
0) = 2 lim

y!x

y 0!x0

Pab(x , y)Pcd(x
0, y 0)G (x , x 0)G (y , y 0).

(10)

4
Davies et.al., Annals of Physics 109, 108 (1977)

Dhanuka, KL; Phys. Rev. D (2020)

II. NOISE KERNEL IN DE SITTER UNIVERSE

First we express the stress energy correlator (algebraically related to the noise kernel) in a
conformally flat Friedmann space-time. For a minimally coupled scalar field in a conformally
flat space-time metric, i.e., g–— = a(÷)2÷–—, we can again use the expression (6) for stress
energy correlator but now with

Pab(x, y) =
1
”c

(a”d

b) ≠
1
2÷ab÷

cd
2
Ò

x

c
Ò

y

d
≠

1
2

3
a(÷) + a(÷Õ)

2

42
÷abm

2 . (20)

Now using this expression of Pab(x, y) in equation (9) and specializing to the case of de Sitter
space-time i.e., a(÷) = ≠

1
H÷

, we have the following expression for noise kernel:

Ètabcd(x, xÕ)ÍdS =
Q

aÒbÒ
Õ
c
G(x, xÕ)ÒaÒ

Õ
d
G(x, xÕ) + ÒbÒ

Õ
d
G(x, xÕ)ÒaÒ

Õ
c
G(x, xÕ)

≠ ÷cd÷fl‡
ÒaÒ

Õ
fl
G(x, xÕ)ÒbÒ

Õ
‡
G(x, xÕ) ≠

1
H2÷Õ2 m2÷cdÒaG(x, xÕ)ÒbG(x, xÕ)

≠ ÷ab÷
“”

Ò“Ò
Õ
c
G(x, xÕ)Ò”Ò

Õ
d
G(x, xÕ) + 1

2÷ab÷
“”÷cd÷fl‡

Ò“Ò
Õ
fl
G(x, xÕ)Ò”Ò

Õ
‡
G(x, xÕ)

+ 1
2H2÷Õ2 m2÷ab÷

“”÷cdÒ“G(x, xÕ)Ò”G(x, xÕ) ≠
1

H2÷2 m2÷abÒ
Õ
c
G(x, xÕ)ÒÕ

d
G(x, xÕ)

+ 1
2H2÷2 m2÷ab÷cd÷fl‡

Ò
Õ
fl
G(x, xÕ)ÒÕ

‡
G(x, xÕ) + 1

2H4÷2÷Õ2 m4÷ab÷cdG(x, xÕ)G(x, xÕ)
R

b . (21)

We are interested in learning if the primordial fluctuations remain relevant if the universe
expands. For this purpose, we first choose a space-like surface by fixing ÷. We now use
the properties of the Wightman function on constant time (÷≠) hypersurfaces and evaluate
Ètabcd(x, xÕ)ÍdS when the physical distances between fixed co-moving distances grow very
large, i.e., a(÷) æ Œ, which in expanding universes will be the late time era.

Minimal coupling

In order to study the stochastic correction, in principle, it will be necessary to consider all
the components of the noise kernel. However, for our purpose, it will be su�cient to explore
only the Èt0000Í component to establish the growth or decay of such stochastic corrections.
In fact, the table in the Appendix B shows that the degree of divergence (if any) of the other
components of the noise kernel is either less than or equal to that of the Èt0000Í component
of the noise kernel. Further the Èt0000Í also gives the energy energy correlator in a straight
forward manner which is a readily accessible observable quantity [11]. Therefore, we need to
calculate the (a = 0, b = 0, c = 0, d = 0) component of the noise kernel. In de Sitter space-
time, late-time corresponds to ÷ æ 0 limit. So, we consider the noise kernel on constant
time sheets (i.e., ÷ = ÷Õ) with finite spatial distances (i.e., �x̨ ”= 0) and then we take the

8



Correlators in early universe
The quantum correlations of massless fields do not 
decay with the growth of scale factor in De Sitter


Reflected by infrared divergence for small masses

3

GMatter(x, y; m2 = 0) = (H2÷÷Õ)≠3GdS(x, y; m2
eff

= 0).
Interestingly, being massless, the gauge invariant tensor
perturbations do follow the same structure as discussed
here and hence have the same conformal structure in
the Wightmann functions between the matter dominated
era and the de Sitter spacetime, which we employ
in analysing the graviton assisted transitions in the
hydrogen atom.

HYDROGEN ATOM IN COSMOLOGY

In the baryogenesis discussion in cosmology, it is well
understood that neutral hydrogen formation happened
when CMBR photons did not possess enough energy to
ionize the hydrogen atoms, a time around a redshift of
z ≥ 1100 (LSS). The newly formed hydrogen atoms at
the LSS could now play the role of a quantum system
interacting with background quantum fields available to
couple with, and its transitions be used as a probe of the
quantum correlations of the background field. We will
see that interaction of hydrogen atoms with quantum
gravitons leads to an abrupt rise in graviton driven
transitions in the matter dominated era while remaining
subdued in all other epochs of the evolution.

FIG. 1. The Average Equation of State (EOS) during the
evolution of the universe in various cosmological models

After their formation, neutral hydrogen atoms free
stream in progressively more matter dominated era (see
fig.(1)) before structure formation begins (z < 10)
and ultimately dark energy kicks in [37]. Thus, these
atoms, for a substantial duration of time, live in an era
where e�ective equation of state is completely matter-like
weff ≥ 0 giving the universe an e�ective description of

the kind a(÷) æ (H÷)≠2+” with ” æ 0 1. Consequently
it leads to a development of a tiny mass to the dual de-
Sitter field m2

eff
≥ 3H2” æ 0. This vanishingly small

mass accords a large correlation to the fields in de Sitter
spacetime as the Wightmann function for this vanishing
mass is given by [34, 38]

GdS(x, xÕ) =
1 H2

16fi2

212
”

+ 4
y

≠4≠2ln(y)+4ln2+O(”)
2

.

(4)
where y is the invariant distance between x, xÕ.

Thus both in the de Sitter and matter dominated era,
the Wightman function diverges for the non-conformal
massless scalar fields and also for gravitons. Even for an
era very near to the matter domination, the correlators
will be exceedingly large as GNear-Matter(x, xÕ; m2 =
0) = (H2÷1÷2)≠3+”GdS(x, xÕ; m2

eff
≥ 3H2” æ 0).

The hydorgen atoms, in interaction with the quantum
gravitational perturbations take up the structure of a
derivatively coupled Unruh DeWitt detector (UDD) as
we shall see below. The structure of derivative coupling
has a peculiar character in Friedmann universes – the
derivative coupling regularizes the divergences appearing
in the Wightman function for the de sitter era, but still

maintains the divergences in the matter dominated era [].
Divergences appearing in the correlators of a quantum
field have been argued to cause rapid transition in UDD
even with small accelerations [39]. Now that we have
divergent graviton correlator in matter dominated era,
it also causes rapid transitions in the hydrogen atom
even with weak curvature, ultimatley redistributing the
fraction of ground and excited hydrogen atoms in the
window z ≥ 10 ≠ 100 (see fig.(1)) when the universe
is undergoing almost complete matter driven expansion,
thus leaving robust imprints of graviton mediated
transitions. We will also show that graviton mediated
transitions super dominate all other competing processes
of transition in the era (weff ≥ 0) demonstrating
the robustness of quantum gravitational wave driven
transition over other chancels of ”noise”.

1
We can approximate the scale factor with a constant power law

universe for a duration if ”̇/” ≥ Ḣ/H π H, near the era when

weff grazes zero, where H is the Hubble parameter of expansion.

4

The commutator between conjugate variables is, therefore,

[φ(x),π(y)] =
isgn(∆t)

4πR
[δ′(∆t − R) + δ′(∆t + R)] =

i

2πR

[
δ(∆t − R)

∆t − R
+
δ(∆t + R)

∆t + R

]

, (13)

which leads to the standard equal time commutation relation in the ∆t → 0 as δ(r) = 1
(2π)3

∫

d3keik·r = − 1
2πr δ

′(r).

Thus, from Eq.(12) and Eq.(13) we see that both the commutators are only supported on the light cone, with no
support inside or outside the light cone, for massless fields. This is natural, as the massless field modes in flat
spacetime are expected to travel on null lines (as they are solution to classical equations of motions). Thus any
sharing of information should occur through exchanges along the null curves. However, once we turn on the curvature
of the spacetime this picture substantially changes as we shall see below for the case of de Sitter spacetime.

B. de Sitter spacetime

For a minimally coupled massless scalar field in a Friedmann universe,

S = −
1

2

∫

d4x a4
(

a−2 ηαβ∂αφ∂βφ
)

, (14)

the field has equation of motion

φ̈+ 2
ȧ

a
φ̇+ k2φ = 0, (15)

which is also satisfied individually by the components (h+, h×) of tensor perturbations [1]. Corresponding to this
equation of motion, in the de Sitter space a(η) = −1/Hη, the mode-function compatible to the Bunch Davies vacuum
state in the conformal time co-ordinate (η) is [45, 46]

vk(η, x) =
1√
H

(Hη)3/2

(2π)3/2

e−ikη

√
2kη

(

1 −
i

kη

)

eik·x =
1√
2H

1

(2π)3/2

(
H

k

)3/2

e−ikη(kη − i)eik·x, (16)

and the Wightman function is obtainable as

GBD(η, η′; R) =
H2ηη′

(2π)3

∫

d3
k

e−ik(η−η′)

2k

[(

1 −
i

kη

) (

1 +
i

kη′

)]

eik·R. (17)

Performing the the angular integrations we get

GBD(η, η′; R) =
H2

(2π)2

∫ ∞

0

dk

2iR

[

ηη′ −
i

k
(η′ − η) +

1

k2

]
(

e−ik(∆η−R) − e−ik(∆η+R)
)

, (18)

where ∆η = η − η′. We can split this into three independent k−integrations

GBD(η, η′; R) =
H2

(2π)2







ηη′

∫ ∞

0

dk

2iR

(

e−ik(∆η−R) − e−ik(∆η+R)
)

︸ ︷︷ ︸

I1

+ i∆η

∫ ∞

0

dk

2iR

1

k

(

e−ik(∆η−R) − e−ik(∆η+R)
)

︸ ︷︷ ︸

I2

+

∫ ∞

0

dk

2iR

1

k2

(

e−ik(∆η−R) − e−ik(∆η+R)
)

︸ ︷︷ ︸

I3








,(19)

and focus on the k− integrations separately, which will be useful for later part of discussions as well. The first integral
I1 is a reminiscent of the flat space Wightman function

I1 = ηη′

∫ ∞

0

dk

2iR

(

e−ik(∆η−R) − e−ik(∆η+R)
)

= −
ηη′

∆η2 − R2
− iπηη′sgn(∆η)δ(∆η2 − R2). (20)
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Correlators in late time era : Omnipresent de Sitter

  FRW                                                             de Sitter

2

believed that all quantum e�ects must have died by the
time of CMBR formation and subsequent evolution is by
and large a classical phenomenon.

In this work, we argue that counter to standard
intuition, late time era in cosmology is also one avenue
where some quantum gravity mediated processes get
hugely revived and have a chance to become stronger and
dominating so much so that certain physical processes
are totally dictated by quantum gravity perturbations
than by any other field. The basic reason for this late
time quantum gravity revival is the fact the graviton
correlators become divergently large in a strong matter
dominated era. Therefore, the processes which are
sensitive to graviton contributions pick up up the late

time revival of graviton correlators. For instance, the
hydrogen atoms formed in the matter dominated era –
post the Last Scattering Surface (LSS) – can undergo
transitions between its internal spherical harmonics
states due to interaction with quantum gravitons, a
process which sharply rises in deep matter dominated
era. Thus, the equilibrium distribution of hydrogen
atoms across these states leading to other optical decays
may leave late time imprints to the CMBR sky and
provide a direct way of observing quantum gravity
e�ects present. This is purely a quantum graviton
mediated process without any competitor i.e. there is
no appreciable contribution from any classical (or even
quantum) field which will cause transitions as strongly
as the gravitons do and subsequently set up a new
equilibrium configuration in the late matter domination
era of cosmic expansion.

GRAVITATIONAL WAVE AS MASSLESS
SCALAR FIELD IN FRW UNIVERSE

To study the propagation of gravitational waves in flat
spacetime, linearized metric perturbations are studied
on the background of a Minkowski metric. These
gravitational perturbations are known to satisfy the a
wave equation in the flat spacetime which other massless
fields such as the electromagnetic fields also satisfy
[26, 27]. However, if we take the background spacetime
to be a conformally flat one, such as the Friedmann
spacetime, this equivalence breaks. The electromagnetic
field, which in 3+1 dimensions is a conformal field, keeps
satisfying the same wave equation it would have in the
flat spacetime, whereas the gauge invariant gravitational
perturbations start satisfying a wave equation what a non

conformal minimally coupled massless scalar field would
[28, 29]

ḧij(k) + 3 ȧ

a
ḣij(k) + k2hij(k) = 0. (1)

Due to the breaking of the conformal invariance, massless
scalar field and gravitational fields undergo one of the
most interesting prediction about quantum fields on
curved spacetime -particle creation [30–33]. No particle
creation takes place for electromagnetic field on the
other hand [27]. Apart from particle creation, gauge
invariant tensor perturbations (gravitational waves) also
share another aspect with the scalar fields in Friedmann
spacetimes – their non trivial quantum correlation
structure, which is the source of the late time e�ects we
consider in this paper and is what we discuss next.

Correlator structure of minimal massless fields in
Friedmann universe

The action of a minimally coupled massless scalar
field in a power law Friedmann universe with metric,
g–— = a2(÷)÷–— , is given by

S © ≠1
2

⁄
d4x

Ô
≠ggµ‹ˆµ„ˆ‹„

= ≠1
2

⁄
d4x a4!

a≠2 ÷µ‹ˆµ„ ˆ‹„
"

. (2)

For a power law Friedmann universe described by a(÷) =
(H÷)≠q, under the conformal transformation, „(x) =
(H÷)≠1+q Â(x), the action can be re-written as that of
a massive scalar field Â(x) in the de Sitter universe with

scale factor ã(÷) = ≠(H÷)≠1,

S © ≠1
2

⁄
d4x

Ô
≠ggµ‹ [ˆµÂˆ‹Â ≠ m2

eff
Â2]

= ≠1
2

⁄
d4x ã4!

ã≠2 ÷µ‹ˆµÂ ˆ‹Â ≠ m2
eff

Â2"
, (3)

having mass defined by m2
eff

= H2(1 ≠ q)(2 + q) [34].
Various aspects of this duality have been studied in [34–
36]. Curiously a massless field in the matter-dominated
era (q = ≠2) maps to a massless field in the de Sitter
space.

Owing to the conformal connection between the
theories, the Wightmann function in the power law
Friedmann universe is related conformally to one in
the de Sitter spacetime i.e., GF RW (x, y; m2 = 0) =
(H÷)q≠1(H÷Õ)q≠1GdS(x, y; m2

eff
= H2(1 ≠ q)(2 + q)).

For the matter dominated era i.e., q = ≠2, one has

2

believed that all quantum e�ects must have died by the
time of CMBR formation and subsequent evolution is by
and large a classical phenomenon.

In this work, we argue that counter to standard
intuition, late time era in cosmology is also one avenue
where some quantum gravity mediated processes get
hugely revived and have a chance to become stronger and
dominating so much so that certain physical processes
are totally dictated by quantum gravity perturbations
than by any other field. The basic reason for this late
time quantum gravity revival is the fact the graviton
correlators become divergently large in a strong matter
dominated era. Therefore, the processes which are
sensitive to graviton contributions pick up up the late

time revival of graviton correlators. For instance, the
hydrogen atoms formed in the matter dominated era –
post the Last Scattering Surface (LSS) – can undergo
transitions between its internal spherical harmonics
states due to interaction with quantum gravitons, a
process which sharply rises in deep matter dominated
era. Thus, the equilibrium distribution of hydrogen
atoms across these states leading to other optical decays
may leave late time imprints to the CMBR sky and
provide a direct way of observing quantum gravity
e�ects present. This is purely a quantum graviton
mediated process without any competitor i.e. there is
no appreciable contribution from any classical (or even
quantum) field which will cause transitions as strongly
as the gravitons do and subsequently set up a new
equilibrium configuration in the late matter domination
era of cosmic expansion.

GRAVITATIONAL WAVE AS MASSLESS
SCALAR FIELD IN FRW UNIVERSE

To study the propagation of gravitational waves in flat
spacetime, linearized metric perturbations are studied
on the background of a Minkowski metric. These
gravitational perturbations are known to satisfy the a
wave equation in the flat spacetime which other massless
fields such as the electromagnetic fields also satisfy
[26, 27]. However, if we take the background spacetime
to be a conformally flat one, such as the Friedmann
spacetime, this equivalence breaks. The electromagnetic
field, which in 3+1 dimensions is a conformal field, keeps
satisfying the same wave equation it would have in the
flat spacetime, whereas the gauge invariant gravitational
perturbations start satisfying a wave equation what a non

conformal minimally coupled massless scalar field would
[28, 29]
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For a power law Friedmann universe described by a(÷) =
(H÷)≠q, under the conformal transformation, „(x) =
(H÷)≠1+q Â(x), the action can be re-written as that of
a massive scalar field Â(x) in the de Sitter universe with

scale factor ã(÷) = ≠(H÷)≠1,
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Â2]
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⁄
d4x ã4!

ã≠2 ÷µ‹ˆµÂ ˆ‹Â ≠ m2
eff

Â2"
, (3)

having mass defined by m2
eff

= H2(1 ≠ q)(2 + q) [34].
Various aspects of this duality have been studied in [34–
36]. Curiously a massless field in the matter-dominated
era (q = ≠2) maps to a massless field in the de Sitter
space.

Owing to the conformal connection between the
theories, the Wightmann function in the power law
Friedmann universe is related conformally to one in
the de Sitter spacetime i.e., GF RW (x, y; m2 = 0) =
(H÷)q≠1(H÷Õ)q≠1GdS(x, y; m2

eff
= H2(1 ≠ q)(2 + q)).

For the matter dominated era i.e., q = ≠2, one has

fluctuations the universe was born with. For these space-times, the stochastic term,
in the Einstein-Langevin equation, will be relevant if the constant, it saturates to, is
comparable to the expectation values appearing in the semiclassical analysis. Thus,
in principle, these space-times are vulnerable to long range e�ects.

This is a bit interesting as, in the late time limit, the Wightman function (and hence
the stress energy correlator) drops the time (or the scale factor) dependency. For
constant time-sheets, we have
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16fi2 2
F1(2 + q, 1 ≠ q, 2, 1 ≠

(�x̨)2

4÷2 ) . (46)

In the ÷ æ 0 limit, we have
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6
. (47)

Since a(÷) = (H÷)≠q (i.e., H÷ = a≠1/q), we can convert the above expression in terms
of the physical distance on constant time sheets, i.e. a2(�x̨)2, and in terms of a(÷)
i.e.,
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(48)

One can check that the leading term of the second series in the square bracket is the
dominant term for q > ≠1/2, in the ÷ æ 0 limit, which kills o� all a dependence at late
times, assuming a pseudo-conformal form. It is worth noting that, for all prior times,
there is a ÷≠ dependency in the expression, which gradually decays and at the end
we are left with the constant leading order term. Therefore, long distance correlators,
with small co-ordinate values, of this space-time maintain the initial time correlations.

• q = 0 : This is a special limit of no dynamics i.e., a(÷) = 1, and hence is the flat space
result, which is well studied [42, 60, 61]. The Wightman function for Minkowskian
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time of CMBR formation and subsequent evolution is –
by and large – a classical phenomenon.

In this work, we argue that counter to standard
intuition, late time era in cosmology is also one avenue
where some quantum gravity mediated processes get
hugely revived and have a chance to become stronger and
dominating so much so that certain physical processes
are totally dictated by quantum gravity perturbations
than by any other field. The basic reason for this late
time quantum gravity revival is the fact the graviton
correlators become divergently large in a strong matter
dominated era. Therefore, the processes which are
sensitive to graviton contributions pick up up the late

time revival of graviton correlators. For instance, the
hydrogen atoms formed in the matter dominated era –
post the Last Scattering Surface (LSS) – can undergo
transitions between its internal spherical harmonics
states due to interaction with quantum gravitons, a
process which sharply rises in deep matter dominated
era. Thus, the equilibrium distribution of hydrogen
atoms across these states leading to other optical decays
may leave late time imprints to the CMBR sky and
provide a direct way of observing quantum gravity
e�ects present. This is purely a quantum graviton
mediated process without any competitor i.e. there is
no appreciable contribution from any classical (or even
quantum) field which will cause transitions as strongly
as the gravitons do and subsequently set up a new
equilibrium configuration in the late matter domination
era of cosmic expansion.

GRAVITATIONAL WAVE AS MASSLESS
SCALAR FIELD IN FRW UNIVERSE

To study the propagation of gravitational waves in flat
spacetime, linearized metric perturbations are studied
on the background of a Minkowski metric. These
gravitational perturbations are known to satisfy the wave
equation in the flat spacetime which other massless
fields such as the electromagnetic fields also satisfy
[26, 27]. However, if we take the background spacetime
to be a conformally flat one, such as the Friedmann
spacetime, this equivalence breaks. The electromagnetic
field, which in 3+1 dimensions is a conformal field, keeps
satisfying the same wave equation it would have in the
flat spacetime, whereas the gauge invariant gravitational
perturbations start satisfying a wave equation what a non
conformal minimally coupled massless scalar field would

[28, 29]

ḧij(k) + 3 ȧ

a
ḣij(k) + k2hij(k) = 0. (1)

Due to the breaking of the conformal invariance, massless
scalar field and gravitational fields undergo one of the
most interesting prediction about quantum fields on
curved spacetime -particle creation [30–33]. No particle
creation takes place for electromagnetic field on the
other hand [27]. Apart from particle creation, gauge
invariant tensor perturbations (gravitational waves) also
share another aspect with the scalar fields in Friedmann
spacetimes – their non trivial quantum correlation
structure, which is the source of the late time e�ects we
consider in this paper and is what we discuss next.

Correlator structure of minimal massless fields in
Friedmann universe

The action of a minimally coupled massless scalar
field in a power law Friedmann universe with metric,
g–— = a2(÷)÷–— , is given by
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having mass defined by m2
eff

= H2(1 ≠ q)(2 + q) [34].
Various aspects of this duality have been studied in [34–
36]. Curiously a massless field in the matter-dominated
era (q = ≠2) maps to a massless field in the de Sitter
space.

Owing to the conformal connection between the
theories, the Wightmann function in the power law
Friedmann universe is related conformally to one in
the de Sitter spacetime i.e., GF RW (x, y; m2 = 0) =
(H÷)q≠1(H÷Õ)q≠1GdS(x, y; m2

eff
= H2(1 ≠ q)(2 + q)).

For the matter dominated era i.e., q = ≠2, one has
GMatter(x, y; m2 = 0) = (H2÷÷Õ)≠3GdS(x, y; m2

eff
= 0).
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where z(x, y) = ηab[Xa(x)− Xa(y)][Xb(x)− Xb(y)]/4 being the invariant distance
between two points (x, y) on a de Sitter hyperboloid [26]. Again, for timelike related
events z(x, y) < 0 and we have

log z → log |z| + isgn(η − η′)π, (50)

leading to an imaginary part in the Wightman function which subsequently leads to a
non-vanishing commutation relation. Thus we can evaluate the commutator structure
for any Wightman function eventually leading to the same commutator structure as
in Eq. (31). Now we can use the de Sitter and Minkowski commutator structures to
obtain OTOC measures for other epochs of the universe.

4 FRW universe

4.1 Conformal map to de Sitter

The action of a minimally coupled massless1 scalar field in a Friedmann universe with
metric, gαβ = a2(η)ηαβ with a(η) = (Hη)−q , is given by

S = −1
2

∫
d4x a4

(
a−2 ηαβ∂αφ ∂βφ

)
.

Under the conformal transformation, φ(x) = (Hη)−1+q ψ(x), the action can be
written as that of a massive scalar field in another Friedmann universe with scale
factor b(η) = (Hη)−1,

S = −1
2

∫
d4x b4

(
b−2 ηαβ∂αψ ∂βψ − m2

e f f ψ
2),

where m2
e f f = H2(1 − q)(2 + q). Therefore, we see that a massless scalar field

φFRW (x) in a Friedmann universe with scaling factor, a(η) = (Hη)−q , goes to a
massive scalar field φdS(x) with mass mef f in a de Sitter universe under such a
conformal transformation [39]. For the de Sitter case, obviously q = 1 whereas for
radiation and the matter dominated era q = −1, and q = −2 respectively. This leads
to a description of the massless field in these two spacetimes in terms of massive fields

in de Sitter spacetime with ν ≡
√
9/4 − m2

e f f /H
2 = 1/2 and ν = 3/2 respectively.

The case for the radiation dominated era (corresponding to ν = 1/2) is somwhat
straight forward as its equivalent de Sitter description is conformally flat. We will
utilize this property to analyze the correlator and the commutator structure in the
radiation dominated era relating them to those in flat spacetime.

1 This analysis can be extend to any non-minimally but non-conformally coupled fields as well [39].

123

Mode functions of these universes are similarly conformally related


Thus the correlators in their individual vacua will also be conformally connected


QFT structure  in these universes are related to each other !

era is a rather well known result and not just our claim (see ). What we have shown is
that this growth leads to a fact that for a a brief era of expansion, the graviton driven
transitions in hydrogen atom become more likely than the EM field driven transitions and
any observational signature o this process will provide a handle towards study of quantum
features of gravitons.

• The conformal time eta during MDE is positive, rather than negative. With the conformal
transformation, the scale factor becomes negative.
Our Reseponse : We thank the referee for raising this point. Please note that when
the conformal transformation is done to the metric the resulting scale actor would become
ã(÷) = 1/H÷ > 0, which will be positive since ÷ is positive as the referee has rightly pointed.
We just write it as ã(÷) = 1/H÷ = ≠1/H ÷̃ where ÷̃ = ≠÷ to make it consistent with the
de Sitter conformal notation. We were too brief in our presentation to this important fact
which masked the clarity of the process, but have revised the drat to illustrate this point
with clarity.
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Omnipresent de Sitter

  FRW                                                             de Sitter

Equivalence between FRW spacetimes and de Sitter

spacetime
2

• A massless scalar field in an FRW spacetime with scaling
factor, a(⌘) = (H⌘)�q, can be mapped to a massive scalar
field in de Sitter spacetime with m2 = H2(1� q)(2 + q).

• The Wightman functions in the two settings are related by the
following

GFRW (x1, x2) = (H⌘1)
q�1(H⌘2)

q�1GdS(x1, x2) . (4)

2
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believed that all quantum e�ects must have died by the
time of CMBR formation and subsequent evolution is by
and large a classical phenomenon.

In this work, we argue that counter to standard
intuition, late time era in cosmology is also one avenue
where some quantum gravity mediated processes get
hugely revived and have a chance to become stronger and
dominating so much so that certain physical processes
are totally dictated by quantum gravity perturbations
than by any other field. The basic reason for this late
time quantum gravity revival is the fact the graviton
correlators become divergently large in a strong matter
dominated era. Therefore, the processes which are
sensitive to graviton contributions pick up up the late

time revival of graviton correlators. For instance, the
hydrogen atoms formed in the matter dominated era –
post the Last Scattering Surface (LSS) – can undergo
transitions between its internal spherical harmonics
states due to interaction with quantum gravitons, a
process which sharply rises in deep matter dominated
era. Thus, the equilibrium distribution of hydrogen
atoms across these states leading to other optical decays
may leave late time imprints to the CMBR sky and
provide a direct way of observing quantum gravity
e�ects present. This is purely a quantum graviton
mediated process without any competitor i.e. there is
no appreciable contribution from any classical (or even
quantum) field which will cause transitions as strongly
as the gravitons do and subsequently set up a new
equilibrium configuration in the late matter domination
era of cosmic expansion.

GRAVITATIONAL WAVE AS MASSLESS
SCALAR FIELD IN FRW UNIVERSE

To study the propagation of gravitational waves in flat
spacetime, linearized metric perturbations are studied
on the background of a Minkowski metric. These
gravitational perturbations are known to satisfy the a
wave equation in the flat spacetime which other massless
fields such as the electromagnetic fields also satisfy
[26, 27]. However, if we take the background spacetime
to be a conformally flat one, such as the Friedmann
spacetime, this equivalence breaks. The electromagnetic
field, which in 3+1 dimensions is a conformal field, keeps
satisfying the same wave equation it would have in the
flat spacetime, whereas the gauge invariant gravitational
perturbations start satisfying a wave equation what a non

conformal minimally coupled massless scalar field would
[28, 29]
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Due to the breaking of the conformal invariance, massless
scalar field and gravitational fields undergo one of the
most interesting prediction about quantum fields on
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creation takes place for electromagnetic field on the
other hand [27]. Apart from particle creation, gauge
invariant tensor perturbations (gravitational waves) also
share another aspect with the scalar fields in Friedmann
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structure, which is the source of the late time e�ects we
consider in this paper and is what we discuss next.

Correlator structure of minimal massless fields in
Friedmann universe

The action of a minimally coupled massless scalar
field in a power law Friedmann universe with metric,
g–— = a2(÷)÷–— , is given by

S © ≠1
2

⁄
d4x

Ô
≠ggµ‹ˆµ„ˆ‹„

= ≠1
2

⁄
d4x a4!

a≠2 ÷µ‹ˆµ„ ˆ‹„
"

. (2)

For a power law Friedmann universe described by a(÷) =
(H÷)≠q, under the conformal transformation, „(x) =
(H÷)≠1+q Â(x), the action can be re-written as that of
a massive scalar field Â(x) in the de Sitter universe with

scale factor ã(÷) = ≠(H÷)≠1,
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ã≠2 ÷µ‹ˆµÂ ˆ‹Â ≠ m2
eff

Â2"
, (3)

having mass defined by m2
eff

= H2(1 ≠ q)(2 + q) [34].
Various aspects of this duality have been studied in [34–
36]. Curiously a massless field in the matter-dominated
era (q = ≠2) maps to a massless field in the de Sitter
space.

Owing to the conformal connection between the
theories, the Wightmann function in the power law
Friedmann universe is related conformally to one in
the de Sitter spacetime i.e., GF RW (x, y; m2 = 0) =
(H÷)q≠1(H÷Õ)q≠1GdS(x, y; m2

eff
= H2(1 ≠ q)(2 + q)).

For the matter dominated era i.e., q = ≠2, one has

2

believed that all quantum e�ects must have died by the
time of CMBR formation and subsequent evolution is by
and large a classical phenomenon.

In this work, we argue that counter to standard
intuition, late time era in cosmology is also one avenue
where some quantum gravity mediated processes get
hugely revived and have a chance to become stronger and
dominating so much so that certain physical processes
are totally dictated by quantum gravity perturbations
than by any other field. The basic reason for this late
time quantum gravity revival is the fact the graviton
correlators become divergently large in a strong matter
dominated era. Therefore, the processes which are
sensitive to graviton contributions pick up up the late

time revival of graviton correlators. For instance, the
hydrogen atoms formed in the matter dominated era –
post the Last Scattering Surface (LSS) – can undergo
transitions between its internal spherical harmonics
states due to interaction with quantum gravitons, a
process which sharply rises in deep matter dominated
era. Thus, the equilibrium distribution of hydrogen
atoms across these states leading to other optical decays
may leave late time imprints to the CMBR sky and
provide a direct way of observing quantum gravity
e�ects present. This is purely a quantum graviton
mediated process without any competitor i.e. there is
no appreciable contribution from any classical (or even
quantum) field which will cause transitions as strongly
as the gravitons do and subsequently set up a new
equilibrium configuration in the late matter domination
era of cosmic expansion.

GRAVITATIONAL WAVE AS MASSLESS
SCALAR FIELD IN FRW UNIVERSE

To study the propagation of gravitational waves in flat
spacetime, linearized metric perturbations are studied
on the background of a Minkowski metric. These
gravitational perturbations are known to satisfy the a
wave equation in the flat spacetime which other massless
fields such as the electromagnetic fields also satisfy
[26, 27]. However, if we take the background spacetime
to be a conformally flat one, such as the Friedmann
spacetime, this equivalence breaks. The electromagnetic
field, which in 3+1 dimensions is a conformal field, keeps
satisfying the same wave equation it would have in the
flat spacetime, whereas the gauge invariant gravitational
perturbations start satisfying a wave equation what a non

conformal minimally coupled massless scalar field would
[28, 29]
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fluctuations the universe was born with. For these space-times, the stochastic term,
in the Einstein-Langevin equation, will be relevant if the constant, it saturates to, is
comparable to the expectation values appearing in the semiclassical analysis. Thus,
in principle, these space-times are vulnerable to long range e�ects.
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In the ÷ æ 0 limit, we have
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Since a(÷) = (H÷)≠q (i.e., H÷ = a≠1/q), we can convert the above expression in terms
of the physical distance on constant time sheets, i.e. a2(�x̨)2, and in terms of a(÷)
i.e.,
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(48)

One can check that the leading term of the second series in the square bracket is the
dominant term for q > ≠1/2, in the ÷ æ 0 limit, which kills o� all a dependence at late
times, assuming a pseudo-conformal form. It is worth noting that, for all prior times,
there is a ÷≠ dependency in the expression, which gradually decays and at the end
we are left with the constant leading order term. Therefore, long distance correlators,
with small co-ordinate values, of this space-time maintain the initial time correlations.

• q = 0 : This is a special limit of no dynamics i.e., a(÷) = 1, and hence is the flat space
result, which is well studied [42, 60, 61]. The Wightman function for Minkowskian

15

Inflationary Era                  q = 1                m = 0


Radiation Dominated          q = - 1              m = √ 2 H       Conformal; Trivial


Matter  Dominated            q = - 2              m = 0              Particularly interesting


Dark Energy Dominated       q  = 1               m = 0

KL, Rajeev, Vikram, Padmanabhan; Phys. Rev. D (2018)

2

time of CMBR formation and subsequent evolution is –
by and large – a classical phenomenon.

In this work, we argue that counter to standard
intuition, late time era in cosmology is also one avenue
where some quantum gravity mediated processes get
hugely revived and have a chance to become stronger and
dominating so much so that certain physical processes
are totally dictated by quantum gravity perturbations
than by any other field. The basic reason for this late
time quantum gravity revival is the fact the graviton
correlators become divergently large in a strong matter
dominated era. Therefore, the processes which are
sensitive to graviton contributions pick up up the late

time revival of graviton correlators. For instance, the
hydrogen atoms formed in the matter dominated era –
post the Last Scattering Surface (LSS) – can undergo
transitions between its internal spherical harmonics
states due to interaction with quantum gravitons, a
process which sharply rises in deep matter dominated
era. Thus, the equilibrium distribution of hydrogen
atoms across these states leading to other optical decays
may leave late time imprints to the CMBR sky and
provide a direct way of observing quantum gravity
e�ects present. This is purely a quantum graviton
mediated process without any competitor i.e. there is
no appreciable contribution from any classical (or even
quantum) field which will cause transitions as strongly
as the gravitons do and subsequently set up a new
equilibrium configuration in the late matter domination
era of cosmic expansion.

GRAVITATIONAL WAVE AS MASSLESS
SCALAR FIELD IN FRW UNIVERSE

To study the propagation of gravitational waves in flat
spacetime, linearized metric perturbations are studied
on the background of a Minkowski metric. These
gravitational perturbations are known to satisfy the wave
equation in the flat spacetime which other massless
fields such as the electromagnetic fields also satisfy
[26, 27]. However, if we take the background spacetime
to be a conformally flat one, such as the Friedmann
spacetime, this equivalence breaks. The electromagnetic
field, which in 3+1 dimensions is a conformal field, keeps
satisfying the same wave equation it would have in the
flat spacetime, whereas the gauge invariant gravitational
perturbations start satisfying a wave equation what a non
conformal minimally coupled massless scalar field would

[28, 29]

ḧij(k) + 3 ȧ

a
ḣij(k) + k2hij(k) = 0. (1)

Due to the breaking of the conformal invariance, massless
scalar field and gravitational fields undergo one of the
most interesting prediction about quantum fields on
curved spacetime -particle creation [30–33]. No particle
creation takes place for electromagnetic field on the
other hand [27]. Apart from particle creation, gauge
invariant tensor perturbations (gravitational waves) also
share another aspect with the scalar fields in Friedmann
spacetimes – their non trivial quantum correlation
structure, which is the source of the late time e�ects we
consider in this paper and is what we discuss next.

Correlator structure of minimal massless fields in
Friedmann universe

The action of a minimally coupled massless scalar
field in a power law Friedmann universe with metric,
g–— = a2(÷)÷–— , is given by

S © ≠1
2

⁄
d4x

Ô
≠ggµ‹ˆµ„ˆ‹„

= ≠1
2

⁄
d4x a4!

a≠2 ÷µ‹ˆµ„ ˆ‹„
"

. (2)

For a power law Friedmann universe described by a(÷) =
(H÷)≠q, under the conformal transformation, „(x) =
(H÷)≠1+q Â(x), the action can be re-written as that of
a massive scalar field Â(x) in the de Sitter universe with

scale factor ã(÷) = ≠(H÷)≠1,

S © ≠1
2

⁄
d4x

Ô
≠ggµ‹ [ˆµÂˆ‹Â ≠ m2

eff
Â2]

= ≠1
2

⁄
d4x ã4!

ã≠2 ÷µ‹ˆµÂ ˆ‹Â ≠ m2
eff

Â2"
, (3)

having mass defined by m2
eff

= H2(1 ≠ q)(2 + q) [34].
Various aspects of this duality have been studied in [34–
36]. Curiously a massless field in the matter-dominated
era (q = ≠2) maps to a massless field in the de Sitter
space.

Owing to the conformal connection between the
theories, the Wightmann function in the power law
Friedmann universe is related conformally to one in
the de Sitter spacetime i.e., GF RW (x, y; m2 = 0) =
(H÷)q≠1(H÷Õ)q≠1GdS(x, y; m2

eff
= H2(1 ≠ q)(2 + q)).

For the matter dominated era i.e., q = ≠2, one has
GMatter(x, y; m2 = 0) = (H2÷÷Õ)≠3GdS(x, y; m2

eff
= 0).
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where z(x, y) = ηab[Xa(x)− Xa(y)][Xb(x)− Xb(y)]/4 being the invariant distance
between two points (x, y) on a de Sitter hyperboloid [26]. Again, for timelike related
events z(x, y) < 0 and we have

log z → log |z| + isgn(η − η′)π, (50)

leading to an imaginary part in the Wightman function which subsequently leads to a
non-vanishing commutation relation. Thus we can evaluate the commutator structure
for any Wightman function eventually leading to the same commutator structure as
in Eq. (31). Now we can use the de Sitter and Minkowski commutator structures to
obtain OTOC measures for other epochs of the universe.

4 FRW universe

4.1 Conformal map to de Sitter

The action of a minimally coupled massless1 scalar field in a Friedmann universe with
metric, gαβ = a2(η)ηαβ with a(η) = (Hη)−q , is given by

S = −1
2

∫
d4x a4

(
a−2 ηαβ∂αφ ∂βφ

)
.

Under the conformal transformation, φ(x) = (Hη)−1+q ψ(x), the action can be
written as that of a massive scalar field in another Friedmann universe with scale
factor b(η) = (Hη)−1,

S = −1
2

∫
d4x b4

(
b−2 ηαβ∂αψ ∂βψ − m2

e f f ψ
2),

where m2
e f f = H2(1 − q)(2 + q). Therefore, we see that a massless scalar field

φFRW (x) in a Friedmann universe with scaling factor, a(η) = (Hη)−q , goes to a
massive scalar field φdS(x) with mass mef f in a de Sitter universe under such a
conformal transformation [39]. For the de Sitter case, obviously q = 1 whereas for
radiation and the matter dominated era q = −1, and q = −2 respectively. This leads
to a description of the massless field in these two spacetimes in terms of massive fields

in de Sitter spacetime with ν ≡
√
9/4 − m2

e f f /H
2 = 1/2 and ν = 3/2 respectively.

The case for the radiation dominated era (corresponding to ν = 1/2) is somwhat
straight forward as its equivalent de Sitter description is conformally flat. We will
utilize this property to analyze the correlator and the commutator structure in the
radiation dominated era relating them to those in flat spacetime.

1 This analysis can be extend to any non-minimally but non-conformally coupled fields as well [39].

123



Massless fields in de Sitter have divergent correlations


Massless fields in matter dominated era conformally share 
the divergence (hence scale invariance)

3

GMatter(x, y; m2 = 0) = (H2÷÷Õ)≠3GdS(x, y; m2
eff

= 0).
Interestingly, being massless, the gauge invariant tensor
perturbations do follow the same structure as discussed
here and hence have the same conformal structure in
the Wightmann functions between the matter dominated
era and the de Sitter spacetime, which we employ
in analysing the graviton assisted transitions in the
hydrogen atom.

HYDROGEN ATOM IN COSMOLOGY

In the baryogenesis discussion in cosmology, it is well
understood that neutral hydrogen formation happened
when CMBR photons did not possess enough energy to
ionize the hydrogen atoms, a time around a redshift of
z ≥ 1100 (LSS). The newly formed hydrogen atoms at
the LSS could now play the role of a quantum system
interacting with background quantum fields available to
couple with, and its transitions be used as a probe of the
quantum correlations of the background field. We will
see that interaction of hydrogen atoms with quantum
gravitons leads to an abrupt rise in graviton driven
transitions in the matter dominated era while remaining
subdued in all other epochs of the evolution.

FIG. 1. The Average Equation of State (EOS) during the
evolution of the universe in various cosmological models

After their formation, neutral hydrogen atoms free
stream in progressively more matter dominated era (see
fig.(1)) before structure formation begins (z < 10)
and ultimately dark energy kicks in [37]. Thus, these
atoms, for a substantial duration of time, live in an era
where e�ective equation of state is completely matter-like
weff ≥ 0 giving the universe an e�ective description of

the kind a(÷) æ (H÷)≠2+” with ” æ 0 1. Consequently
it leads to a development of a tiny mass to the dual de-
Sitter field m2

eff
≥ 3H2” æ 0. This vanishingly small

mass accords a large correlation to the fields in de Sitter
spacetime as the Wightmann function for this vanishing
mass is given by [34, 38]

GdS(x, xÕ) =
1 H2

16fi2

212
”

+ 4
y

≠4≠2ln(y)+4ln2+O(”)
2

.

(4)
where y is the invariant distance between x, xÕ.

Thus both in the de Sitter and matter dominated era,
the Wightman function diverges for the non-conformal
massless scalar fields and also for gravitons. Even for an
era very near to the matter domination, the correlators
will be exceedingly large as GNear-Matter(x, xÕ; m2 =
0) = (H2÷1÷2)≠3+”GdS(x, xÕ; m2

eff
≥ 3H2” æ 0).

The hydorgen atoms, in interaction with the quantum
gravitational perturbations take up the structure of a
derivatively coupled Unruh DeWitt detector (UDD) as
we shall see below. The structure of derivative coupling
has a peculiar character in Friedmann universes – the
derivative coupling regularizes the divergences appearing
in the Wightman function for the de sitter era, but still

maintains the divergences in the matter dominated era [].
Divergences appearing in the correlators of a quantum
field have been argued to cause rapid transition in UDD
even with small accelerations [39]. Now that we have
divergent graviton correlator in matter dominated era,
it also causes rapid transitions in the hydrogen atom
even with weak curvature, ultimatley redistributing the
fraction of ground and excited hydrogen atoms in the
window z ≥ 10 ≠ 100 (see fig.(1)) when the universe
is undergoing almost complete matter driven expansion,
thus leaving robust imprints of graviton mediated
transitions. We will also show that graviton mediated
transitions super dominate all other competing processes
of transition in the era (weff ≥ 0) demonstrating
the robustness of quantum gravitational wave driven
transition over other chancels of ”noise”.

1
We can approximate the scale factor with a constant power law

universe for a duration if ”̇/” ≥ Ḣ/H π H, near the era when

weff grazes zero, where H is the Hubble parameter of expansion.

C. Massless Scalar Fields in Nearly Matter Dominated Spacetimes

In this subsection, we look at the behaviour of the response rate for UdW detectors which couple with
massless scalar fields in nearly matter dominated spacetimes. Since for nearly matter dominated spacetimes
i.e., for q = �2 + � where � << 1, the mass of the corresponding scalar field in de Sitter spacetime is given
by

m2

H2
= (1� q)(2 + q) = (3� �)� ⇡ 3� , (17)

and approaches to zero in the � going to zero limit which maps massless in matter dominated case to massless
in de Sitter, we expect that the response rate for nearly matter dominated spacetimes inherit the infrared
divergence behaviour from their counterpart of nearly massless fields in de Sitter spacetime. To investigate
this case, let us write down the Wightman function of massless scalar fields in nearly matter dominated
spacetimes which, using Eqs. (7)-(9) and Eq. (17), is given by

Gmatter(x(⌘1), x(⌘2)) = (H2⌘1⌘2)
�3+�

⇣ H2

16⇡2

⌘⇣2
�
+

4

y
� 4� 2ln(y) + 4ln2 +O(�)

⌘
. (18)

Using the relation between comoving and conformal coordinates i.e.,
�
(3 � �)Ht

� 1
3�� = (H⌘), in nearly

matter dominated spacetimes and the formula Eq. (5), we see that the rate of transition probability, for
⌘̃ 2 (⌘i, (⌘i + ⌘f )/2), is given by

1
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Di↵erent terms in the integrand have same type of pole structure as in the de Sitter case and hence we can
argue the finiteness of each term in the above expression just as we have done for the de Sitter case. We see
that the leading order term in the � ! 0 limit is given by

1
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(20)

From the above expression, we see that the rate of transitions for a UdW detector which couples with
massless scalar fields in nearly matter dominated spacetimes is dominated by the 1/� term in the � ! 0
limit. Thus, for � being close to zero, we expect that the transitions within the internal quantum states of
a UdW detector would take place at a rapid rate. As mentioned before, this behaviour of a conventionally
coupled UdW detector in this case finds its origin in the infrared divergence of the corresponding nearly
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For di�erent power-law universes, i.e., for di�erent values of q, one can evaluate the above
expression on constant time sheets. However, as ‹ can take values only in the range
[≠3/2, 3/2], we see that we can use the considered equivalence only for those values of
q which lie in the range [≠2, 1]. The region |‹| > 3/2 is mapped to the region outside
[≠2, 1]. As we are interested in the behaviour of the noise kernel component in the late
time universe, we observe that, for q œ (0, 1], the late time universe corresponds to ÷ æ 0
and for q œ [≠2, 0), the late time universe corresponds to ÷ æ Œ. We now list down the
stress-energy correlator for various Friedmann space-times:

• q = 1 : This case trivially corresponds to a massless scalar field in de Sitter space-
time, which is just the case ‹ = 3/2 in the previous section. As discussed above, the
correlator diverges in the late-time limit as ÷≠4 or a4.

• q œ (0, 1) : If we perform, for this case as well, the same power counting analysis as is
done in Appendix B, we find that the relevant noise kernel component in the late time
universe i.e., ÷ æ 0 limit, has an ÷ independent term. Therefore, we have a constant
late time noise kernel component for those Friedmann universes which have negative
exponent of ÷ in the scale factor. In fact, we have
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survives, which is time independent and is therefore remnant of the quantum
fluctuations the universe was born with. For these space-times, the stochastic term,
in the Einstein-Langevin equation, will be relevant if the constant, it saturates to, is
comparable to the expectation values appearing in the semiclassical analysis. Thus,
in principle, these space-times are vulnerable to long range e�ects.
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In the ÷ æ 0 limit, we have
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Since a(÷) = (H÷)≠q (i.e., H÷ = a≠1/q), we can convert the above expression in terms
of the physical distance on constant time sheets, i.e. a2(�x̨)2, and in terms of a(÷)
i.e.,
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One can check that the leading term of the second series in the square bracket is the
dominant term for q > ≠1/2, in the ÷ æ 0 limit, which kills o� all a dependence at late
times, assuming a pseudo-conformal form. It is worth noting that, for all prior times,
there is a ÷≠ dependency in the expression, which gradually decays and at the end
we are left with the constant leading order term. Therefore, long distance correlators,
with small co-ordinate values, of this space-time maintain the initial time correlations.

• q = 0 : This is a special limit of no dynamics i.e., a(÷) = 1, and hence is the flat space
result, which is well studied [42, 60, 61]. The Wightman function for Minkowskian
space-time is given by G(x, xÕ) = 1

4fi2(≠(÷≠÷Õ)2+(�x̨)2) . Using this expression, we find
that the noise kernel, on constant time-sheets for finite spatial distance, is given by:

Èt̂00(÷, x̨)t̂00(÷, x̨Õ)ÍP.L. = 3
2fi4(�x̨)8 . (52)

Evidently, for constant co-moving distance, the correlator survives as the co-moving
and physical distances are the same and physical distance does not grow in “late time”
or “early time” because of lack of dynamics. For large physical distance, there is no
appreciable stochastic e�ect.

• q œ (≠2, 0) : In this case, a(÷) = (H÷)|q| and hence the late time universe corresponds
to ÷ æ Œ. For this case, we have
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.

• q = ≠2 : This case is particularly interesting as it corresponds to a dual field in de
Sitter space-time, which is also massless. The stress energy correlator for this case is
given as
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.

• q = ≠2 : This case is particularly interesting as it corresponds to a dual field in de
Sitter space-time, which is also massless. The stress energy correlator for this case is
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.

• q = ≠2 : This case is particularly interesting as it corresponds to a dual field in de
Sitter space-time, which is also massless. The stress energy correlator for this case is
given as
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.

• q = ≠2 : This case is particularly interesting as it corresponds to a dual field in de
Sitter space-time, which is also massless. The stress energy correlator for this case is
given as
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.

• q = ≠2 : This case is particularly interesting as it corresponds to a dual field in de
Sitter space-time, which is also massless. The stress energy correlator for this case is
given as
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Here “ is Euler gamma symbol and Â(0)(z) is PolyGamma function. Clearly, the late
time correlator has a behaviour O(÷4q) for fixed �x which washes away any quantum
correlation at late times.

• q = ≠2 : This case is particularly interesting as it corresponds to a dual field in de
Sitter space-time, which is also massless. The stress energy correlator for this case is
given as
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Since ‘ æ 0 limit blows up for all large but finite ÷, the long range correlators become
dominant over the expectation values and one needs to resort to stochastic gravity
necessarily. In fact, it is easy to show that such divergent behaviour persists at all
times. This is not unexpected as we have already seen that the Wightman function
diverges secularly for massless case in de Sitter. However, q = ≠2 space-time is
connected to the de Sitter case as

Gq=≠2
m=0 (x, xÕ) = (H2÷÷Õ)≠3GdS

m=0(x, xÕ), (55)
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Since a(÷) = (H÷)≠q (i.e., H÷ = a≠1/q), we can convert the above expression in terms
of the physical distance on constant time sheets, i.e. a2(�x̨)2, and in terms of a(÷)
i.e.,
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One can check that the leading term of the second series in the square bracket is the
dominant term for q > ≠1/2, in the ÷ æ 0 limit, which kills o� all a dependence at late
times, assuming a pseudo-conformal form. It is worth noting that, for all prior times,
there is a ÷≠ dependency in the expression, which gradually decays and at the end
we are left with the constant leading order term. Therefore, long distance correlators,
with small co-ordinate values, of this space-time maintain the initial time correlations.

• q = 0 : This is a special limit of no dynamics i.e., a(÷) = 1, and hence is the flat space
result, which is well studied [42, 60, 61]. The Wightman function for Minkowskian
space-time is given by G(x, xÕ) = 1

4fi2(≠(÷≠÷Õ)2+(�x̨)2) . Using this expression, we find
that the noise kernel, on constant time-sheets for finite spatial distance, is given by:

Èt̂00(÷, x̨)t̂00(÷, x̨Õ)ÍP.L. = 3
2fi4(�x̨)8 . (52)

Evidently, for constant co-moving distance, the correlator survives as the co-moving
and physical distances are the same and physical distance does not grow in “late time”
or “early time” because of lack of dynamics. For large physical distance, there is no
appreciable stochastic e�ect.

• q œ (≠2, 0) : In this case, a(÷) = (H÷)|q| and hence the late time universe corresponds
to ÷ æ Œ. For this case, we have
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Back reaction cart wheel

Scalar Back reaction : Some epochs are susceptible to 
strong back reaction

space-times in these regime never drop their quantum character and a higher order quantum
analysis is necessary. Interestingly, accelerating universes require w < ≠1/3 and hence, any
accelerating universe also seeks for a quantum treatment. The summary of this section is
given by the following diagram:

w œ [0, ≠1/3) fi (≠1/3, ≠1)
Divergent

Noise Kernel

q = ≠2 q = 1

q = 0w œ (0, Œ)
Zero Noise Kernel

w œ (≠Œ, ≠1]
Constant (w.r.t. ÷) Noise Kernel

FIG. 1. Relation between di�erent types of fluid (and the corresponding Friedmann space-times)
and the behaviour of noise kernel in these regions.

V. CONCLUSIONS

In this paper, we analyse the stability of various Friedmann universes under the possible
e�ect of stochastic correction term in the Einstein-Langevin equation. Using the relations
between Wightman functions in de Sitter and Friedmann universes, as well as the relation of
the Wightman function to noise kernel components, we relate the noise kernel in Friedmann
universe to the conformal scaling of the noise kernels of massive fields in de Sitter universe.
Typically quantum fluctuations are expected to decay over large length scales in flat space-
time and remain relevant only over extremely small scales. A Friedmann universe is
conformally flat, i.e. the points which are initially very close by, will get physically separated
under a global topological expansion. However, in this lies an interesting possibility, where
two space-time points are physically apart by large distances while maintaining small co-
ordinate separation. Under certain scenarios, e.g. for conformal fields, it may be possible
that the noise kernel cares about the co-ordinate separation and not about the true physical
distances. In those cases, the quantum fluctuations which were stronger when the points
had not accelerated away from each other, remain as strong under time (and hence physical
distance) growth. Further, there can be cases, where the signature of small co-ordinate
distance get enhanced with increasing conformal scale factor. We argue that certain
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Massless field back reaction growth FRW catalogue

Scalar


Spinor


Vector                      


Tensor     

Dhanuka, KL; Phys. Rev. D (2020)

 Dhanuka; Phys. Rev. D (2022)

Conformally flat in 3+1, flat space correlation

KL; GRG (2022)

Facilitated by uncontrolled growth of correlators



Quantum Gravitons : a la Unruh DeWitt Detector Route

Hydrogen atom perturbed by curvature


Specialize to perturbed Friedmann universe

Interaction term

• Consider a hydrogen atom moving along a classical trajectory
with its internal structure being governed by the following
Schrodinger equation
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where R0l0m are the Riemann tensor components.

• For small perturbations over FRW spacetimes i.e.,
gµ⌫ = a2(⌘)(⌘µ⌫ + hµ⌫), the interaction term becomes
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a
ḣlm � 1

2
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• Consider a hydrogen atom moving along a classical trajectory
with its internal structure being governed by the following
Schrodinger equation
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where R0l0m are the Riemann tensor components.
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Figure 5: This figure captures the construction of Fermi normal coordinates. Here, � is some time-like
geodesic about which we construct FNCs. P is some point in the spacetime which intersects � orthogonally
at point G via the unique spacelike geodesic �. vi are the components of the tangent vector to � at point G.

1. FRW Spacetimes With No Perturbation

For this analysis, the center of mass of the atom is taken to move along comoving trajectories in a flat
FRW spacetime (with scale factor being a(⌘)). For comoving observers, the spatial coordinates are fixed i.e.,
xµ(t) = (⌘(t), ci) and the tangent vector field is given by

dxµ

dt
=

⇣1
a
, 0
⌘
. (45)

A set of orthonormal basis which are parallel transported along these comoving geodesics can be taken as
follows

~eµ0 =
1

a
(1, 0, 0, 0), ~eµ1 =

1

a
(0, 1, 0, 0), ~eµ2 =

1

a
(0, 0, 1, 0), ~eµ3 =

1

a
(0, 0, 0, 1). (46)

The relevant Riemann tensor components in FNCs, using the relation

RFNC

0l0m = RCon

µ⌫��
~eµ0~e

⌫

l
~e�0~e

�

m
, (47)

are given by the relation RFNC

0l0m = RCon

0l0m/a4. Using the form of the Riemann tensor components in conformal
coordinates i.e., RCon

0l0m = ��lm(aa00 � a02), one finds that

RFNC

0l0m = ��lm
1

a4
(aa00 � a02) , (48)

where 0 denotes a derivative with respect to conformal time. Thus, the interaction Hamiltonian is given by

HI = �m

2

ä

a
r2 , (49)

where ˙ denotes a derivative with respect to comoving time coordinate.
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x2, y2, xy, yx xz, yz z2

�l �m �l �m �l �m

-2,0,2 -2,0,2 -2,0,2 -1,1 -2,0,2 0

TABLE I. Selection rules for transitions of the type < nÕ, lÕ, mÕ|xixp|n, l, m >.

non-trivial change in spherical harmonics, which can be used as a distinct imprint of the quantum gravitons on the
transitions of the hydrogen atom. We now show even the probability rate of such transitions is overwhelmingly large.
Using the unperturbed flat spacetime hydrogen atom energy eigenstates [52], we can find the selection rules for the
transitions of the form < nÕ, lÕ, mÕ|xixp|n, l, m >, which are given in the table I. Further, using the equation of motion
in Eq.(14), we see that Hlm can be written as
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2
hlm(÷, y̨). (26)

Let us now consider a transition between di�erent spherical harmonics. For these transitions, the unperturbed
curvature induced term proportional to ”lm in Hlm drops out and we see that, using (26), the vacuum expectation of
the product of gravitational fields appearing in the formula for transition probability is given by
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Using (16), (25) and (27), we obtain the expression for transition probability between states with di�erent spherical
harmonics as
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We can now go to a new set of variables ÷̃ = ÷1+÷2
2 and �÷ = ÷1 ≠ ÷2 and define the rate of transitions with respect

to the variable ÷̃. In fact, one obtains the following expression for the rate with respect to ÷̃
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where the quantity in the big square brackets is first evaluated as given and then every factor of ÷1 and ÷2 in it is to
be expressed in terms of ÷̃ and �÷ before performing the �÷ integral.
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Graviton mediated transition

Derivatively coupled UDD in matter dominated era


EM transitions are distinct and relatively suppressed

4

Coupling of Hydrogen atoms with gravitational
waves

Since post LSS, the hydrogen atoms are expected to
move non-relativisitically [40], we can employ the non-
relativistic limit of the Dirac equation resulting in the
Schrödinger equation [41–45]
3

i
ˆ

ˆt
≠ m

4
Â =

3
≠ 1

2m
Ò2 ≠ e2

r
+ 1

2mRF NC

0l0m
xlxm

4
Â,

(5)
upto leading order in the Fermi Normal Co-ordinates
(FNCs) xl, where R0l0m are the Riemann tensor
components expressing the curvature induced corrections
to the flat spacetime Schrödinger equation with the
central Coulomb potential of the nucleus [41, 45]. The
Riemann tensor components in FNCs are related to those
in any arbitrary coordinate system, by the relation

RF NC

abcd
= Rarbitrary

µ‹“”
ęµ

a
ę‹

b
ę“

c
ę”

d
(6)

where ęµ

a
are a set of orthonormal basis parallel

transported along the central timelike geodesic. The ęµ

0
is the tangent vector field along the central geodesic the
hydrogen atom follows [45, 46].
Treating curvature induced terms as perturbations, one
employs time dependent perturbation theory to obtain
rate of transition probability of the hydrogen atom
[47, 48]. We analyse the case when the background
spacetime is a perturbed Friedmann universe and the
(tensor) perturbations are quantized [27].

TRANSITIONS IN PERTURBED FRW
SPACETIMES

A Friedmann universe supporting tensor perturbations
can be expressed in conformal time co-ordinates as

ds2 = a2(÷)(÷µ‹ + hµ‹)dxµdx‹ . (7)

Using the orthonormal basis vector fields connecting the
conformal co-ordinates to FNCs, we can convert the
Riemann tensor from conformal coordinates to the Fermi
normal coordinates (FNCs) as (See Appendix)
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1
≠”lm(aaÕÕ≠aÕ2)≠ aaÕ

2 h
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2 h
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2
+O(h2).

(8)
Using the above expression for the relevant Riemann
components, the interaction Hamiltonian in the co-
moving frame is obtained as HI = mHlmxlxm/2 with
Hlm =

1
≠ ”lm

ä

a
≠ ȧ

a
ḣlm ≠ 1

2 ḧlm

2
. Here we can see that

the interaction terms takes a form of UDD interaction
where the part mxlxm/2 belongs to the quantum system
and the part Hlm to the background field. Similar
to the selection rules for electromagnetic transitions,
the quantized operator ĤI = mĤlmx̂lx̂m/2 will o�er
selection rules for the graviton mediated transitions e.g.
�l = ≠2, 0, 2 (see Appendix). Taking into account the
selection rules, let us now consider an allowed transition
between di�erent spherical harmonics {nlm} æ {nÕlÕmÕ}.
For these transitions, the unperturbed curvature induced
term proportional to ”lm in Hlm drops out and the
vacuum expectation of the product of gravitational
perturbations appearing in the formula for transition
probability is given by
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.

Thus, we see that the graviton correlator Gijpk appears
naturally in the transition probability. Employing the
commutation relations between creation and annihilation
operators of gravitons (see Appendix), we get

PÂnlmæÂ
nÕlÕmÕ = m2

4 ÈÂnÕlÕmÕ | x̂ix̂j |ÂnlmÍú ÈÂnÕlÕmÕ | x̂px̂k |ÂnlmÍ lim
y̨1æy̨2

⁄
÷f

÷i

d÷1

⁄
÷f

÷i

d÷2e≠i�(t(÷1)≠t(÷2))

1
a3

1

1a1a
Õ

1
2

ˆ

ˆ÷1

2 1
a3

2

1a2a
Õ

2
2

ˆ

ˆ÷2

21
”ip”jk + ”ik”jp ≠ ”ij”pk

2
(H2÷1÷2)≠3+”

H2

32fi2”
+ Subdominant terms. (9)

One can further define a rate of transition by going to
÷̃, ÷≠ basis as RRg = dPÂnlmæÂ

nÕlÕmÕ /d÷̃. As discussed
before, in the era of Êeff ≥ 0 i.e., ” ≥ 0 arbitrary
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is the tangent vector field along the central geodesic the
hydrogen atom follows [45, 46].
Treating curvature induced terms as perturbations, one
employs time dependent perturbation theory to obtain
rate of transition probability of the hydrogen atom
[47, 48]. We analyse the case when the background
spacetime is a perturbed Friedmann universe and the
(tensor) perturbations are quantized [27].
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ę‹

b
ę“
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a
are a set of orthonormal basis parallel

transported along the central timelike geodesic. The ęµ
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Hlm =

1
≠ ”lm

ä

a
≠ ȧ

a
ḣlm ≠ 1

2 ḧlm

2
. Here we can see that

the interaction terms takes a form of UDD interaction
where the part mxlxm/2 belongs to the quantum system
and the part Hlm to the background field. Similar
to the selection rules for electromagnetic transitions,
the quantized operator ĤI = mĤlmx̂lx̂m/2 will o�er
selection rules for the graviton mediated transitions e.g.
�l = ≠2, 0, 2 (see Appendix). Taking into account the
selection rules, let us now consider an allowed transition
between di�erent spherical harmonics {nlm} æ {nÕlÕmÕ}.
For these transitions, the unperturbed curvature induced
term proportional to ”lm in Hlm drops out and the
vacuum expectation of the product of gravitational
perturbations appearing in the formula for transition
probability is given by

lim
y̨1æy̨2

È0| Ĥij(y̨1, ÷1)Ĥpk(y̨2, ÷2) |0Í

= lim
y̨1æy̨2

1
a4

1

1a1a
Õ

1
2

ˆ

ˆ÷1
≠ a2

1
2 Ò2

y̨1

2 1
a4

2

1a2a
Õ

2
2

ˆ

ˆ÷2
≠ a2

2
2 Ò2

y̨2

2

◊ È0| ĥij(y̨1, ÷1)ĥpk(y̨2, ÷2) |0Í
¸ ˚˙ ˝

Gijpk

.

Thus, we see that the graviton correlator Gijpk appears
naturally in the transition probability. Employing the
commutation relations between creation and annihilation
operators of gravitons (see Appendix), we get

PÂnlmæÂ
nÕlÕmÕ = m2

4 ÈÂnÕlÕmÕ | x̂ix̂j |ÂnlmÍú ÈÂnÕlÕmÕ | x̂px̂k |ÂnlmÍ lim
y̨1æy̨2

⁄
÷f

÷i

d÷1

⁄
÷f

÷i

d÷2e≠i�(t(÷1)≠t(÷2))

1
a3

1

1a1a
Õ

1
2

ˆ

ˆ÷1

2 1
a3

2

1a2a
Õ

2
2

ˆ

ˆ÷2

21
”ip”jk + ”ik”jp ≠ ”ij”pk

2
(H2÷1÷2)≠3+”

H2

32fi2”
+ Subdominant terms. (9)

One can further define a rate of transition by going to
÷̃, ÷≠ basis as RRg = dPÂnlmæÂ

nÕlÕmÕ /d÷̃. As discussed
before, in the era of Êeff ≥ 0 i.e., ” ≥ 0 arbitrary
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small, we have an abrupt rise in the rate of transitions
mediated by quantum hµ‹ even for a small window of
time. Note that the cause of the abrupt rise is solely
due to conformal perseverance of the de-Sitter divergent
correlators under the derivative coupling. In the de Sitter
spacetime such a divergence would not have survived as
being spacetime independent –Eq.(4) – the derivative
actions of the coupling annihilates the divergent term.
Further, in other era e.g.- the radiation dominated era,
the graviton correlator remains finite and does not lead
to any enhanced transitions as the dual theory in de
Sitter is massive, devoid of any divergence [34, 45]. It
is in the deep matter dominated era only where and the
dominance of quantum graviton mediated transition is
manifest. Further, the matter dominated era provides a

unique window where graviton mediated process is super

dominant over all other processes. For instance the
other long range interaction over the cosmological scale
is the electromagnetic field, which in 4-dimensions is a
conformal field. An elementary analysis (see Appendix)
clearly demonstrates that the electromagnetic to graviton
mediated transition ratio in such an era has an expression

1RRe

RRg

2

”

Ã ”
d2

m2Q2�2

1H

�

2 4
3
, (10)

where d and Q are the dipole and quadrupole elements
of a hydrogen atom, respectively. One sees that as
” æ 0 the ratio diminishes in the favor of gravitons.
On top of that the factor (H/�)4/3

provides a further

strong dominance to graviton transtions in the matter

dominated era (with the observed parameter values [49])
this ratio provides an astronomical ≥ 1045 enhancement
in matter dominated era compared to the ratio in flat
spacetime for hydrogen atoms and is also maximal only
for matter dominated era (see Appendix). Even thermal
transitions due to surrounding CMB photon in that era
remains much weaker in comparison.

OBSERVATIONAL IMPLICATIONS

We have seen (see Fig. 2) that the transition rate of
the hydrogen atom across di�erent n, l, m and nÕ, lÕ, mÕ

shoots up abruptly when the universe undergoes a near
perfect matter dominated phase ” æ 0, even for a
finite duration of expansion history. This will cause
rapid transitions across these states which are primarily
mediated by graviton coupling. Moreover, it is easy to
see from Eq. (9) that the leading order divergent term

FIG. 2. The rate of transition by quantum gravitational
perturbation w.r.t. electromagnetic field driven transition in
an universe given q = ≠2 + 10≠n+1

is symmetric under � æ ≠�. Therefore the hydrogen
atoms will undergo rapid excitations and de-excitations
to disrupt the standard thermal distribution they would
have established w.r.t. the background CMBR. Under
the action of the graviton mediated rapid transitions
the hydrogen atoms will renegotiate a new equilibrium
condition ne/ng ≥ �ø/�¿ ≥ 1. There will be minor
deviation from this relation as the universe grows out
of the matter dominated phase and the subdominant
terms start contributing [? ]. Such excited atoms will
start emitting through other channels as well when the
graviton driven transitions gradually fade away and thus
will leave optical imprints as well.

Furthermore, the rapid transitions are primarily
mediated by vacuum graviton correlations. The upward
transitions will happen primarily through vacuum
fluctuations but the de excitations will cause an extra
graviton emission2. Thus the process of setting up of new
equilibrium setting will cause a burst of gravitons which
will further lead to visible e�ects of CMB polarizations [].
Thus we see that the late time strong matter dominated

epoch of the universe provides a unique window to have a

glimpse of quantum gravity processes and may potentially

be used to test and constrain quantum gravity models

against available observable channel. A more detailed
analysis of all such potential observables viz-a-viz the
CMB sky will be pursued elsewhere.

2
These statements remain true for all physically well behaves

states [36, 50]

3

GMatter(x, y; m2 = 0) = (H2÷÷Õ)≠3GdS(x, y; m2
eff

= 0).
Interestingly, being massless, the gauge invariant tensor
perturbations do follow the same structure as discussed
here and hence have the same conformal structure in
the Wightmann functions between the matter dominated
era and the de Sitter spacetime, which we employ
in analysing the graviton assisted transitions in the
hydrogen atom.

HYDROGEN ATOM IN COSMOLOGY

In the baryogenesis discussion in cosmology, it is well
understood that neutral hydrogen formation happened
when CMBR photons did not possess enough energy to
ionize the hydrogen atoms, a time around a redshift of
z ≥ 1100 (LSS). The newly formed hydrogen atoms at
the LSS could now play the role of a quantum system
interacting with background quantum fields available to
couple with, and its transitions be used as a probe of the
quantum correlations of the background field. We will
see that interaction of hydrogen atoms with quantum
gravitons leads to an abrupt rise in graviton driven
transitions in the matter dominated era while remaining
subdued in all other epochs of the evolution.

10 100 1000 104 105 106
1 + z
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FIG. 1. The Average Equation of State (EOS) during the
evolution of the universe in various cosmological models

After their formation, neutral hydrogen atoms free
stream in progressively more matter dominated era (see
fig.(1)) before structure formation begins (z < 10)
and ultimately dark energy kicks in [37]. Thus, these
atoms, for a substantial duration of time, live in an era
where e�ective equation of state is completely matter-like
weff ≥ 0 giving the universe an e�ective description of

the kind a(÷) æ (H÷)≠2+” with ” æ 0 1. Consequently
it leads to a development of a tiny mass to the dual de-
Sitter field m2

eff
≥ 3H2” æ 0. This vanishingly small

mass accords a large correlation to the fields in de Sitter
spacetime as the Wightmann function for this vanishing
mass is given by [34, 38]

GdS(x, xÕ) =
1 H2

16fi2

212
”

+ 4
y

≠4≠2ln(y)+4ln2+O(”)
2

.

(4)
where y is the invariant distance between x, xÕ.

Thus both in the de Sitter and matter dominated era,
the Wightman function diverges for the non-conformal
massless scalar fields and also for gravitons. Even for an
era very near to the matter domination, the correlators
will be exceedingly large as GNear-Matter(x, xÕ; m2 =
0) = (H2÷1÷2)≠3+”GdS(x, xÕ; m2

eff
≥ 3H2” æ 0).

The hydorgen atoms, in interaction with the quantum
gravitational perturbations take up the structure of a
derivatively coupled Unruh DeWitt detector (UDD) as
we shall see below. The structure of derivative coupling
has a peculiar character in Friedmann universes – the
derivative coupling regularizes the divergences appearing
in the Wightman function for the de sitter era, but still

maintains the divergences in the matter dominated era [].
Divergences appearing in the correlators of a quantum
field have been argued to cause rapid transition in UDD
even with small accelerations [39]. Now that we have
divergent graviton correlator in matter dominated era,
it also causes rapid transitions in the hydrogen atom
even with weak curvature, ultimatley redistributing the
fraction of ground and excited hydrogen atoms in the
window z ≥ 10 ≠ 100 (see fig.(1)) when the universe
is undergoing almost complete matter driven expansion,
thus leaving robust imprints of graviton mediated
transitions. We will also show that graviton mediated
transitions super dominate all other competing processes
of transition in the era (weff ≥ 0) demonstrating
the robustness of quantum gravitational wave driven
transition over other chancels of ”noise”.

1
We can approximate the scale factor with a constant power law

universe for a duration if ”̇/” ≥ Ḣ/H π H, near the era when

weff grazes zero, where H is the Hubble parameter of expansion.
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Comparison with Electromagnetic transition

The probability for a UdW detector to make a transition from ground state to excited state , within first order
perturbation theory, is given by

P0æ�

|D È�| d̂z(0) |0Í
D

|2
=

⁄
tf

ti

⁄
tf

ti

dt1dt2e≠i�(t1≠t2)a≠1(t1)a≠1(t2)ÈẼz

flat
(x1)Ẽz

flat
(x2)Í

=
⁄

÷f

÷i

⁄
÷f

÷i

d÷1d÷2e≠i�(t(÷1)≠t(÷2))ÈẼz

flat
(x1)Ẽz

flat
(x2)Í

=
⁄

÷f

÷i

⁄
÷f

÷i

d÷1d÷2e≠i�(t(÷1)≠t(÷2)) 1
fi2(�÷ ≠ i‘)4 (30)

Let us consider the spacetimes with q œ (≠2, 0) for which the cosmic time is related to the conformal time by the
relation t = H

≠q
÷

1≠q

1≠q
and t œ (0, Œ) for ÷ œ (0, Œ). Defining a new variable z = �H≠q÷1≠q, we can pull out all the

� and H dependence out of the above integral and find that the rate of transition probability, RRe, has following
dependence on � and H

RRe Ã d2(�H≠q)
3

1≠q (31)

where d2 = |D È�| d̂z(0) |0Í
D

|2 is the dipole moment square.

Response rate for gravitational waves in curved spacetime

The transition probability between states with di�erent spherical harmonics of a hydrogen atom caused by
gravitational waves is given by

PÂnlmæÂ
nÕlÕmÕ = m2

4 ÈÂnÕlÕmÕ | x̂ix̂j |ÂnlmÍú ÈÂnÕlÕmÕ | x̂px̂k |ÂnlmÍ lim
c̨1æc̨2

⁄
÷f

÷i

d÷1

⁄
÷f

÷i

d÷2e≠i�(t(÷1)≠t(÷2))

1
a3

1

1a1a
Õ

1
2

ˆ

ˆ÷1
≠ a2

1
2 Ò2

c̨1

2 1
a3

2

1a2a
Õ

2
2

ˆ

ˆ÷2
≠ a2

2
2 Ò2

c̨2

21
”ip”jk + ”ik”jp ≠ ”ij”pk + ”ij

ˆc̨1p
ˆc̨1k

Ò2
c̨1

+ ”pk

ˆc̨1i
ˆc̨1j

Ò2
c̨1

≠ ”ip

ˆc̨1j
ˆc̨1k

Ò2
c̨1

≠ ”ik

ˆc̨1j
ˆc̨1p

Ò2
c̨1

≠ ”jp

ˆc̨1i
ˆc̨1k

Ò2
c̨1

≠ ”jk

ˆc̨1i
ˆc̨1p

Ò2
c̨1

+
ˆc̨1i

ˆc̨1j
ˆc̨1p

ˆc̨1k

Ò2
c̨1

Ò2
c̨1

2 ⁄
d3q̨eiq̨.(c̨1≠c̨2)hq(÷1)hú

q
(÷2) . (32)

Performing the same steps as in the above section, we find that the rate of transition, RRg, caused by gravitational
waves is
NO !!! WRITE PROPERLY AND NOT HAND WAVINGLY! ELABORATE UPON. SHOW THE INTEGRAL
WHICH IS A FUNCTION OF q, WHICH BECOMES PROP TO ” IN MD. SHOW WHAT IS QUADRUPLE
MOMENT (I RENAMED IT TO Q) Q ..WHAT HAPPENNED TO ITS TENSOR INDICES ?

RRg Ã m2(Q)2(�)
5≠4q

1≠q (H)
≠q

1≠q (33)

Flat spacetime case

Using eqs. (31) and (33) and taking q = 0, we find that the ratio of response rate caused by electromagnetic and
gravitational fields in flat spacetime i.e., for q = 0, is given by

1RRe

RRg

2

flat

Ã d2

m2(Q)2�2 (34)
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Curved spacetime case

In curved spacetime, the ratio of rates has the following form
1RRe

RRg

2

curved

Ã d2

m2(Q)2�2

1H

�

2≠ 2q

1≠q (35)

Thermal Transition through CMB

Let us consider the action of Maxwell theory in some spacetime with metric gµ‹ i.e.,

S[A–, gµ‹ ] = ≠1
4

⁄
d4x

Ô
≠gFµ‹Ffl‡gµflg‹‡ (36)

If we consider another system where we have

g̃µ‹ = a2gµ‹

Ãfl = Afl

g̃µ‹ = a≠2gµ‹


≠g̃ = a4Ô

≠g (37)

we find that

S̃[Ã–, g̃µ‹ ] = ≠1
4

⁄
d4x


≠g̃F̃µ‹ F̃fl‡ g̃µflg̃‹‡

= ≠1
4

⁄
d4x

Ô
≠ga4Fµ‹Ffl‡a≠2gµfla≠2g‹‡

= S[A–, gµ‹ ] . (38)

Some important relations are

Ãµ = g̃µ‹Ã‹ = a≠2gµ‹A‹ = a≠2Aµ

F̃ µ‹ = a≠4F µ‹ . (39)

Particularly, we have

Ẽi = F̃ 0i = a≠4F 0i = a≠4Ei (40)

Specializing to the case where we have gµ‹ = ÷µ‹ i.e., ds2 = ≠(d÷)2 + (dx̨)2, and g̃µ‹ = a2÷µ‹ , we have

Ẽi(x) = a≠4(÷)Ei(x) = ≠a≠4(÷)ˆ÷Ai(x) (41)

in the Coulomb gauge in which A0(x) = 0 and Ǫ̀.Ą = 0
This implies that

ÈẼi(x1)Ẽj(x2)Í = a≠4
1 a≠4

2 ˆ÷1ˆ÷2ÈAi(x1)Aj(x2)Í

= a≠4
1 a≠4

2 (ˆ÷1ˆ÷2”ij ≠ ˆi

1ˆj

2) 1
4fi2

1 1
≠(�÷ ≠ i‘)2 + (�x̨)2

2

=
a≠4

1 a≠4
2

1
(≠(�÷ ≠ i‘)2 ≠ (�x̨)2)”ij + 2(x1 ≠ x2)i(x1 ≠ x2)j

2

fi2(≠(�÷ ≠ i‘)2 + (�x̨)2)3 (42)

For comoving observers, the above expression reduces to

ÈẼi(x1)Ẽj(x2)Í = a≠4
1 a≠4

2 ”ij

fi2(�÷ ≠ i‘)4 (43)
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Flat spacetime case

From the above analysis, we find that the ratio of response rate caused by electromagnetic and gravitational fields
in flat spacetime is given by HOW ???

1RRe

RRg

2

flat

Ã d2

m2(Q)2�2 (30)

Curved spacetime case

In curved spacetime, the ratio of rates has the following form
1RRe

RRg

2

curved

Ã d2

m2(Q)2�2

1H

�

2≠ 2q
1≠q (31)

Thermal Transition through CMB

OBTAIN EXPRESSION AND ITS ESTIMATE FOR LONG TERMS RESPONSE THROUGH THERMAL
CMBR.

≥ 1039, 10≠52, ≥ 10≠12
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Take home
Classical Appearance of the universe is perplexing !


Inflation tried preserves quantum seed. Hands it over to following 
phases


Radiation dominated epoch : Sympathetic towards heading to classical


Matter dominated to matter driven era : Quantum revival possible


Late time epoch may not be as innocent as we would have thought it to 
be !

Thank You !


