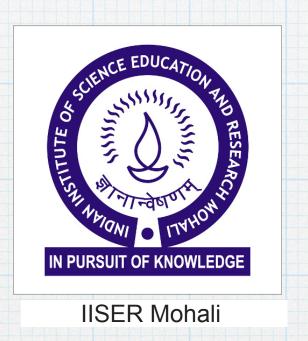
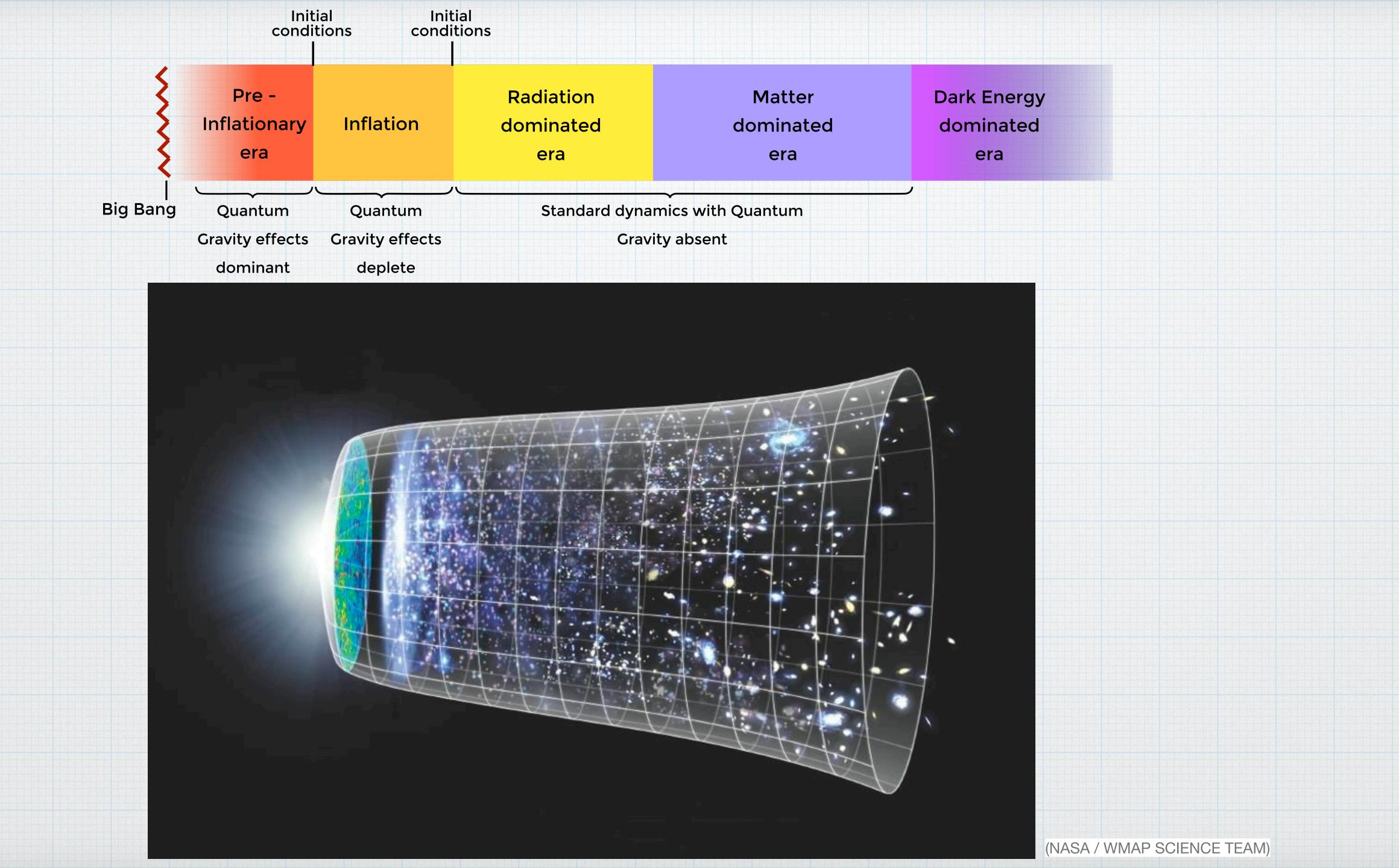
How Classical is our Universe?

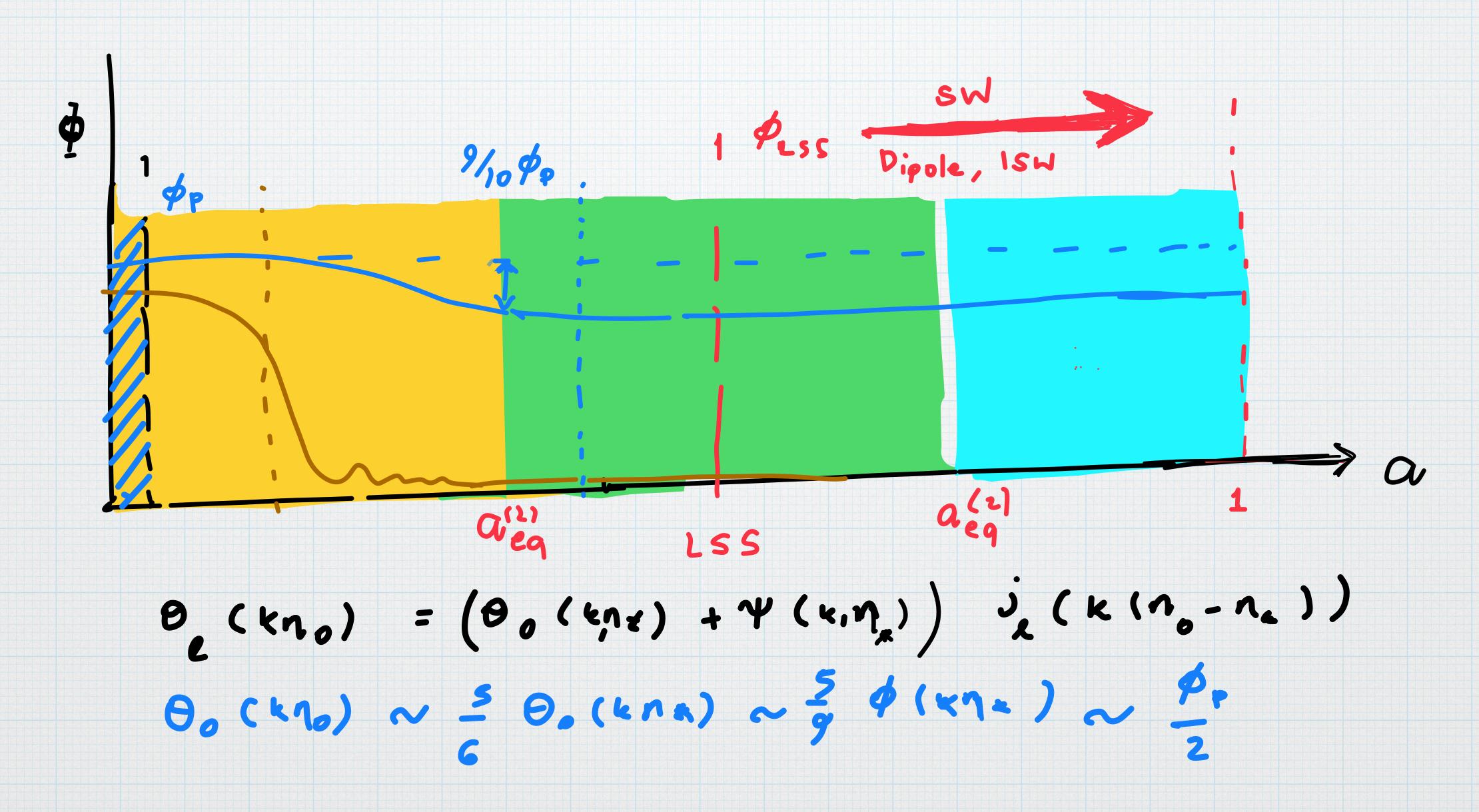
Kinjalk Lochan



From Big Bang to Now: A Theory-Experiment Dialogue SRM University,
25-01-2025

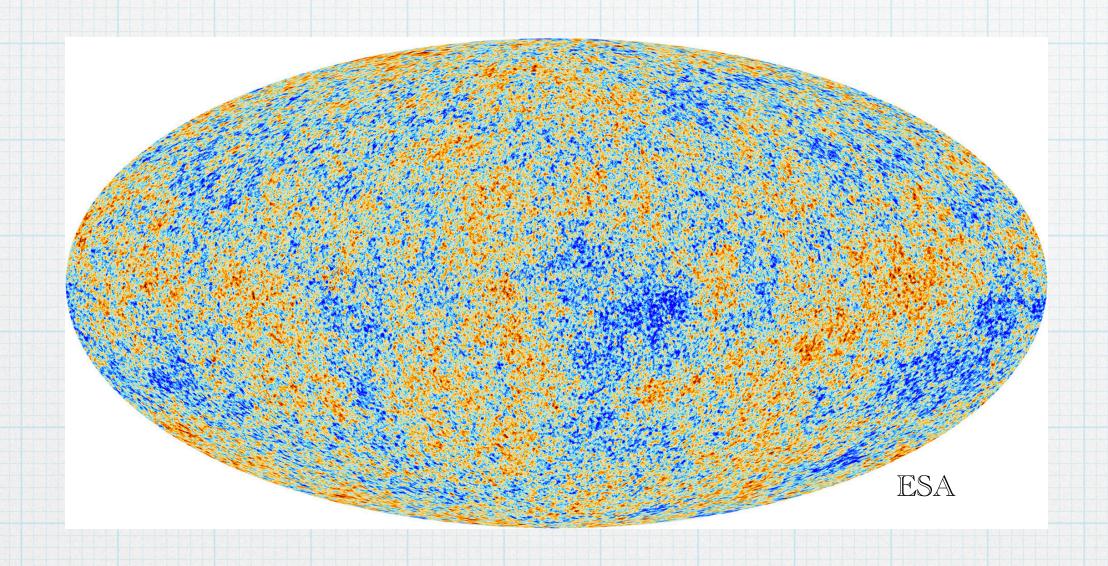


Primordial seed!



Universe: Post Born Quantum

- * Past tracking inevitably takes the universe into the quantum domain
- * How do we know if the universe was ever quantum?



* Primordial seed -> large wavelength 9/10

Freezing of Modes

Puzzleat hand!

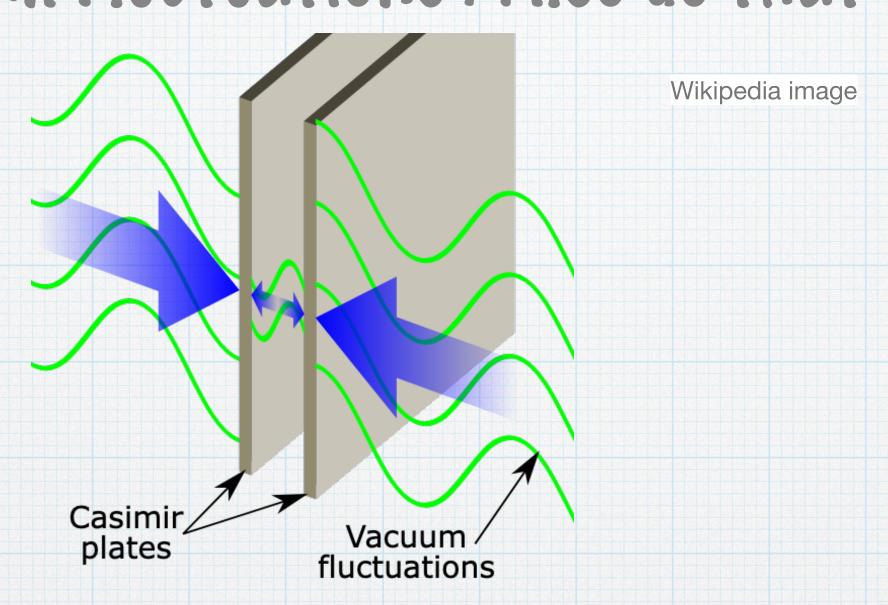
The Universe (homogeneous and isotropic) expands and accelerates!

For that to happen: p + 3P < 0

Normal matters do not do that!

So we invoke Dark energy: Entity with negative pressure

Have we ever seen such a thing? Vacuum Fluctuations: Also do that



A mysterious cosmological constant does that and so does a slowly evolving homogeneous field!

But they preserve some quantumness of matter riding atop!

Negative Pressure providers are not known to suppress quantum properties!

Can acceleration of the universe be achieved without having quantum effects?

What happened to universe's quantumness?

T. Padmanabhan, Phys. Rev. D (1989)

J. Halliwell, Phys. Rev. D (1989)

PHYSICAL REVIEW D

VOLUME 39, NUMBER 10

15 MAY 1989

VOLUME 39, NUMBER 10

15 MAY 1989

PHYSICAL REVIEW D

Decoherence in quantum cosmology

Jonathan J. Halliwell

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

(Received 27 January 1989)

- Decoherence in the density matrix describing quantum three-geometries and the emergence of classical spacetime
- T. Padmanabhan

 Astrophysics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

 (Received 1 December 1988)

- * Tracing out unobserved matter d.o.f results in decoherence for gravitational d.o.f.
- * Once the "Classical" geometry has emerged, for observable matter d.o.f. one can do semi classical analysis.
- * Yet primordial seeds are required to turn classical, preferably by the time inflation ends

Decoherence without Decoherence

Polarski, Starobinsky; Class.Quant.Grav. (1996)

Lesgourgues, Polarski, Starobinsky; Nucl. Phys. B(1997)

* Primordial perturbations: Vacuum State gets squeezed

$$y''(\mathbf{k}) + \left(k^2 - \frac{a''}{a}\right)y(\mathbf{k}) = 0.$$

$$u_k = e^{-i(k\eta + \delta_k)} \cosh r_k \qquad v_k = e^{i(k\eta + \frac{\pi}{2})} \sinh r_k$$

$$f_k = \frac{u_k + v_k^*}{\sqrt{2k}}, \qquad |f_k|^2 = \frac{1}{2k} (\cosh 2r_k + \cos 2\varphi_k \sinh 2r_k),$$

$$g_k = \sqrt{\frac{k}{2}}(u_k - v_k^*) = i(f_k' - \frac{a'}{a}f_k).$$

Squeezing + Pecoherence

Kiefer, Polarski; Adv. Sci. Lett. (2009)

$$y''(\mathbf{k}, \eta) + \left(k^2 - \frac{a''}{a}\right)y(\mathbf{k}, \eta) = 0$$

$$y(\mathbf{k}, \eta) = \sqrt{2k} \ f_{k1}(\eta) \ y_{\mathbf{k}} - \sqrt{\frac{2}{k}} \ f_{k2}(\eta) \ p_{\mathbf{k}}$$
$$p(\mathbf{k}, \eta) = \sqrt{\frac{2}{k}} \ g_{k1}(\eta) \ p_{\mathbf{k}} + \sqrt{2k} \ g_{k2}(\eta) \ y_{\mathbf{k}}$$

* Rotate in Phase space and squeeze

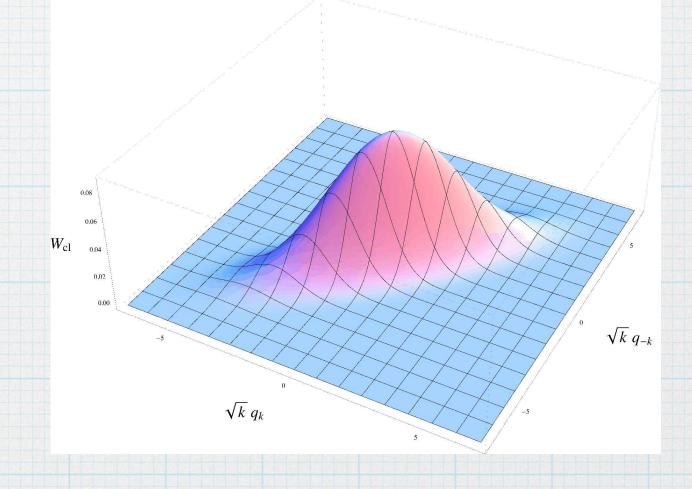
$$_{H}\langle 0, \eta_{0}|G(y(\mathbf{k}))G^{\dagger}(y(\mathbf{k}))|0, \eta_{0}\rangle_{H} = \int \int dy_{1}(\mathbf{k})dy_{2}(\mathbf{k})\rho(|y(\mathbf{k})|)|G(y(\mathbf{k}))|^{2}$$

Why do cosmological perturbations look classical to us?

Claus Kiefer*
Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany

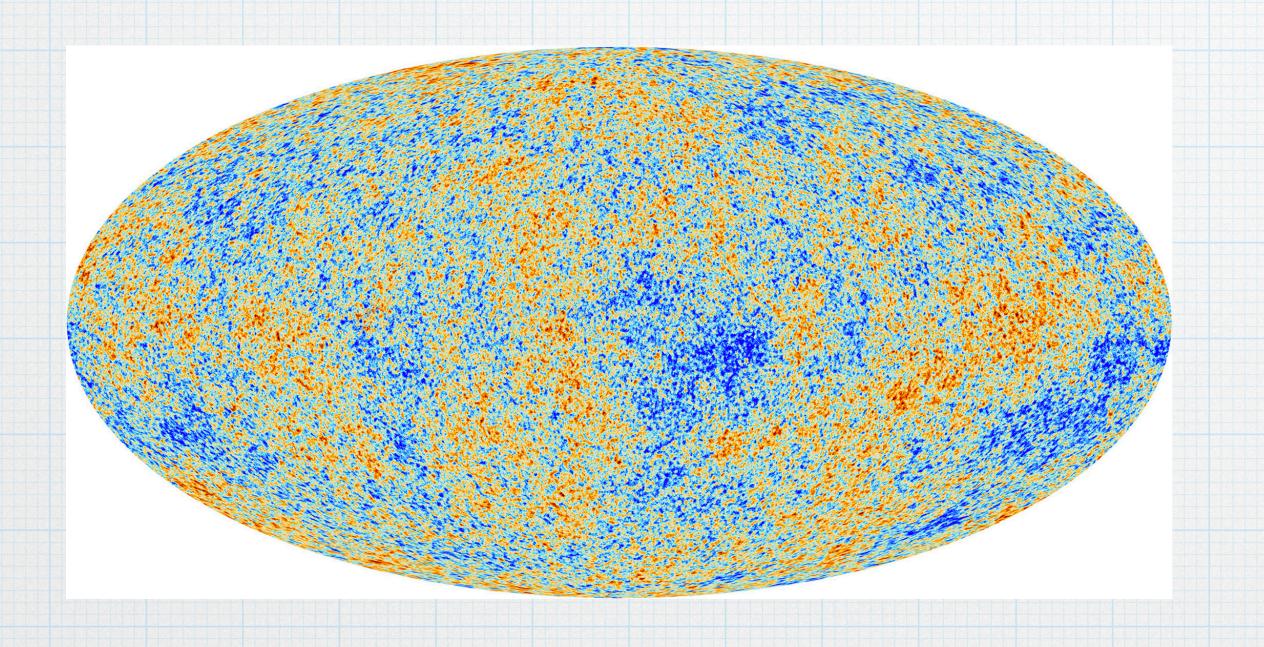
David Polarski[†]
Laboratoire de Physique Théorique et Astroparticules, CNRS,
Université de Montpellier II, 34095 Montpellier, France

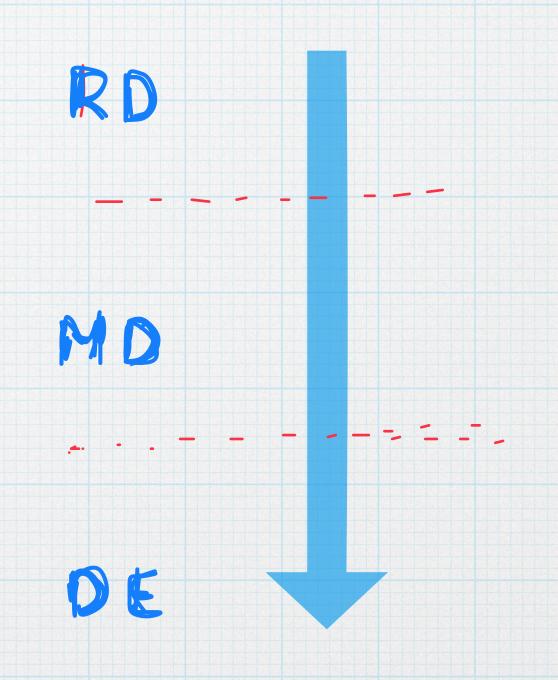
Quantum Character becomes irrelevant If (f1,g2) or (f2,g1) pair diminish



- * "Late time final data" can be used as stochastic classical initial data
- * A Classical description is apt thereafter

* Primordial seed — large wavelength 9/10 — Freezing of Modes





* Temperature anisotropy

Expectation versus correlation

* For independent events

$$P(A \cap B) = P(A) P(B)$$

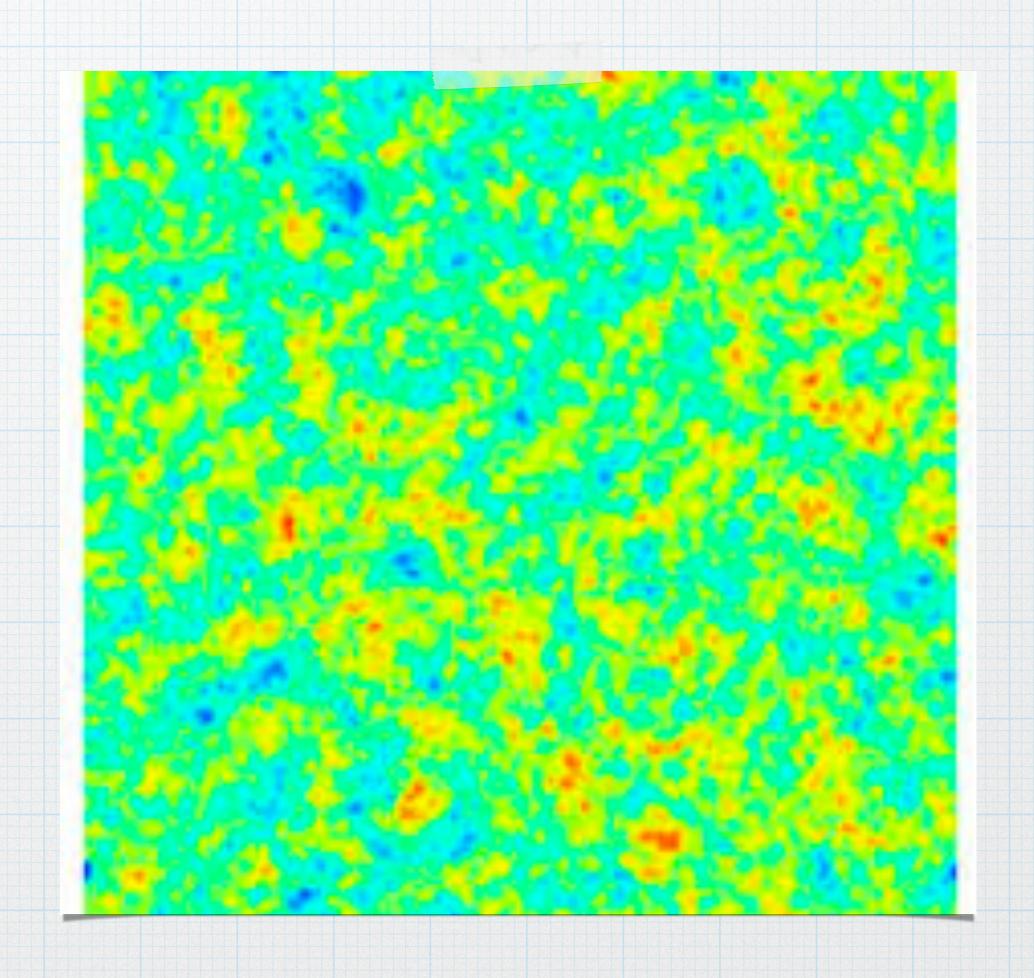
* For Quantum processes

$$<\phi(x)\phi(y)> \neq <\phi(x)> <\phi(y)>$$

Reminiscent Quantumness

- * Initial quantumness persists.

 Correlation persists. Entanglement persists.
- * To dub CMBR data completely classical is probably too early!
- * Observable: Quantum interaction with environment leads to Non Gaussianities in primordial perturbations



! Yet Not classical at heart

* Quantum Entanglement: Bell's test

Kanno, Soda; Phys. Rev. D (2017)

Martin, Vennin; Phys. Rev D (2016)

Two-mode squeezed state

$$|0_{\mathbf{k}}^{\text{in}}\rangle = \sum_{n=0}^{\infty} \frac{\tanh^{2n} r_k}{\cosh r_k} |2n_{\mathbf{k}}^{\text{out}}\rangle \otimes |2n_{-\mathbf{k}}^{\text{out}}\rangle + \sum_{n=0}^{\infty} \frac{\tanh^{2n+1} r_k}{\cosh r_k} |(2n+1)_{\mathbf{k}}^{\text{out}}\rangle \otimes |(2n+1)_{-\mathbf{k}}^{\text{out}}\rangle$$

$$\langle 0_{\mathbf{k}}^{\text{in}} | \mathcal{B}_2 | 0_{\mathbf{k}}^{\text{in}} \rangle = \sqrt{1 + \tanh^2 2r_k} \le \sqrt{2}$$
.

$$\delta\left(\boldsymbol{k}, -\boldsymbol{k}\right) = \cosh^2 r_k \log_2\left(\cosh^2 r_k\right)$$

$$-\sinh^2 r_k \log_2\left(\sinh^2 r_k\right)$$

$$\langle \mathcal{B}_4 \rangle$$
1.5

1.0

0.5

0.0

-3 -2 -1 0 1 2 3 θ

$$S\left[\hat{\rho}(\mathbf{k})\right] = \left(1 + \langle \hat{n}_k \rangle\right) \log_2\left(1 + \langle \hat{n}_k \rangle\right) - \langle \hat{n}_k \rangle \log_2\langle \hat{n}_k \rangle$$

Is the lingering quantumness harmless?

* Semiclassical treatment

Hu, Verdaguer; Liv. Rev. Relat. (2008)

$$G_{ab}[g] + \Lambda g_{ab} - 2(\alpha A_{ab} + \beta B_{ab})[g] = 8\pi G \langle \hat{T}_{ab}^{R}[g] \rangle$$

* Second order effect

$$G_{ab}[g+h] + \Lambda(g_{ab} + h_{ab}) - 2(\alpha A_{ab} + \beta B_{ab})[g+h] = 8\pi G(\langle \hat{T}_{ab}^{R}[g+h] \rangle + \xi_{ab}[g])$$

* Stochastic field.

Quantum Fluctuations

$$\langle \xi_{ab}[g;x)\xi_{cd}[g;y)\rangle_s = N_{abcd}[g;x,y)$$

* Noise Kernel: Stress Tensor fluctuations

$$N_{abcd}[g;x,y) = \frac{1}{2} \langle \{\hat{t}_{ab}[g;x), \hat{t}_{cd}[g;y)\} \rangle \qquad \hat{t}_{ab}[g;x) \equiv \hat{T}_{ab}[g;x) - \langle \hat{T}_{ab}[g;x) \rangle$$

Noise Kernel in FRW

$$N_{abcd}(x,x') = 2 \lim_{\substack{y \to x \\ y' \to x'}} P_{ab}(x,y) P_{cd}(x',y') G(x,x') G(y,y').$$

Dhanuka, KL; Phys. Rev. D (2020)

$$P_{ab}(x,y) = \left(\delta_{(a}^{c}\delta_{b)}^{d} - \frac{1}{2}\eta_{ab}\eta^{cd}\right)\nabla_{c}^{x}\nabla_{d}^{y} - \frac{1}{2}\left(\frac{a(\eta) + a(\eta')}{2}\right)^{2}\eta_{ab}m^{2}$$

* The correlators of the fields decide!

Correlators in early universe

- * The quantum correlations of massless fields do not decay with the growth of scale factor in De Sitter
- * Reflected by infrared divergence for small masses

$$G_{dS}(x,x') = \left(\frac{H^2}{16\pi^2}\right) \left(\frac{2}{\delta} + \frac{4}{y} - 4 - 2ln(y) + 4ln2 + O(\delta)\right)$$

Ford, Parker; Phys. Rev D (1977), Allen; Phys. Rev. D (1985), Ford; Phys. Rev. D (1985), Antoniadis, Tsamis, Woodard; J Math. Phys. (1986), Allen, Follacci; Phys. Rev. D (1987),, Tsamis, Woodard; CQG (1994),..., Marolf, Morrison; Phys Rev. D (2010), Page, Wu; JCAP (2012), Anderson, Mottola; Phys. Rev. D. (2014), Higuchi, Rendell; JCAP(2018),...

$$G_{BD}(\eta, \eta'; \mathbf{R}) = \frac{H^2}{(2\pi)^2} \int_0^\infty \frac{dk}{2iR} \left[\eta \eta' - \frac{i}{k} (\eta' - \eta) + \frac{1}{k^2} \right] \left(e^{-ik(\Delta \eta - R)} - e^{-ik(\Delta \eta + R)} \right)$$

Parker and Toms, Cambridge (2007), KL; GRG (2022)

* Genesis of the scale invariant power spectrum.. Still semiclassical analysis is safe under back reaction

Correlators in late time era: Omnipresent de Sitter

KL, Rajeev, Vikram, Padmanabhan; Phys. Rev. D (2018)

$$S \equiv -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

$$= -\frac{1}{2} \int d^4x \, a^4 (a^{-2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi)$$

$$\phi(x) = -\frac{1}{2} \int d^4x \, a^4 (a^{-2} \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi)$$

$$S \equiv -\frac{1}{2}$$

$$f(x) = (H\eta)^{-1+q} \psi(x) = -\frac{1}{2}$$

$$S \equiv -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} [\partial_{\mu}\psi \partial_{\nu}\psi - m_{eff}^2 \psi^2]$$

$$\phi(x) = (H\eta)^{-1+q} \psi(x) \qquad = -\frac{1}{2} \int d^4x \,\tilde{a}^4 (\tilde{a}^{-2} \eta^{\mu\nu} \partial_{\mu}\psi \,\partial_{\nu}\psi - m_{eff}^2 \psi^2)$$

$$a(\eta) = (H\eta)^{-q}$$

$$\tilde{a}(\eta) = 1/H\eta = -1/H\tilde{\eta}$$
 where $\tilde{\eta} = -\eta$

$$m_{eff}^2 = H^2(1-q)(2+q)$$

* FRW

de Sitter

- * Mode functions of these universes are similarly conformally related
- * Thus the correlators in their individual vacua will also be conformally connected
- * QFT structure in these universes are related to each other!

Omnipresent de Sitter

KL, Rajeev, Vikram, Padmanabhan; Phys. Rev. D (2018)

$$S \equiv -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$
$$= -\frac{1}{2} \int d^4x \, a^4 \left(a^{-2} \, \eta^{\mu\nu} \partial_{\mu} \phi \, \partial_{\nu} \phi \right)$$

$$\phi(x) = (H\eta)^{-1+q} \psi(x)$$

$$S \equiv -\frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} [\partial_{\mu}\psi \partial_{\nu}\psi - m_{eff}^2 \psi^2]$$

$$\phi(x) = (H\eta)^{-1+q} \psi(x) \qquad = -\frac{1}{2} \int d^4x \,\tilde{a}^4 (\tilde{a}^{-2} \eta^{\mu\nu} \partial_{\mu}\psi \,\partial_{\nu}\psi - m_{eff}^2 \psi^2)$$

de Sitter
$$\tilde{a}(\eta) = -(H\eta)^{-1}$$

$$m_{eff}^2 = H^2(1-q)(2+q)$$

$$G^{FRW}(x_1, x_2) = (H\eta_1)^{q-1}(H\eta_2)^{q-1}G^{dS}(x_1, x_2)$$

$$q = 1$$

$$m = 0$$

$$q = -1$$

$$m = \sqrt{2H}$$

$$q = -2$$

$$m = 0$$

Particularly interesting

$$q = 1$$

$$m = 0$$

* Massless fields in de Sitter have divergent correlations

$$G_{dS}(x,x') = \left(\frac{H^2}{16\pi^2}\right)\left(\frac{2}{\delta} + \frac{4}{y} - 4 - 2\ln(y) + 4\ln(2 + O(\delta))\right)$$

* Massless fields in matter dominated era conformally share the divergence (hence scale invariance)

Wands; Phys. Rev. D (1999)

$$G^{matter}(x(\eta_1), x(\eta_2)) = (H^2 \eta_1 \eta_2)^{-3+\delta} \left(\frac{H^2}{16\pi^2}\right) \left(\frac{2}{\delta} + \frac{4}{y} - 4 - 2ln(y) + 4ln2 + O(\delta)\right)$$

$$a(\eta) = (H\eta)^{-q}$$

$$q \in (0,1)$$
:

$$q = 0$$
:

$$q \in (-2,0)$$
:

$$q = -2 + \epsilon$$

$$\langle \hat{t}_{00}(\eta, \vec{x}) \hat{t}_{00}(\eta, \vec{x'}) \rangle_{P.L.}$$

$$\lim_{\eta \to 0} \frac{(H\eta)^{4q-4}}{(\Delta \vec{x})^4} \left[\frac{H^4 \eta^{4-4q} (\Delta \vec{x})^{4q-4}}{8\pi^5} \left((11 - 12q + 4q^2)(\Gamma(2-q))^2 (\Gamma(0.5+q))^2 \right) + \frac{4^{4q} \eta^{4q+4} H^4}{32\pi^5 (\Delta \vec{x})^{4+4q}} \left((1 + 2q)^4 (\Gamma(2+q))^2 (\Gamma(-0.5-q))^2 \right) + O(\eta^{6-4q}) \right].$$

$$\frac{3}{2\pi^4(\Delta\vec{x})^8}.$$

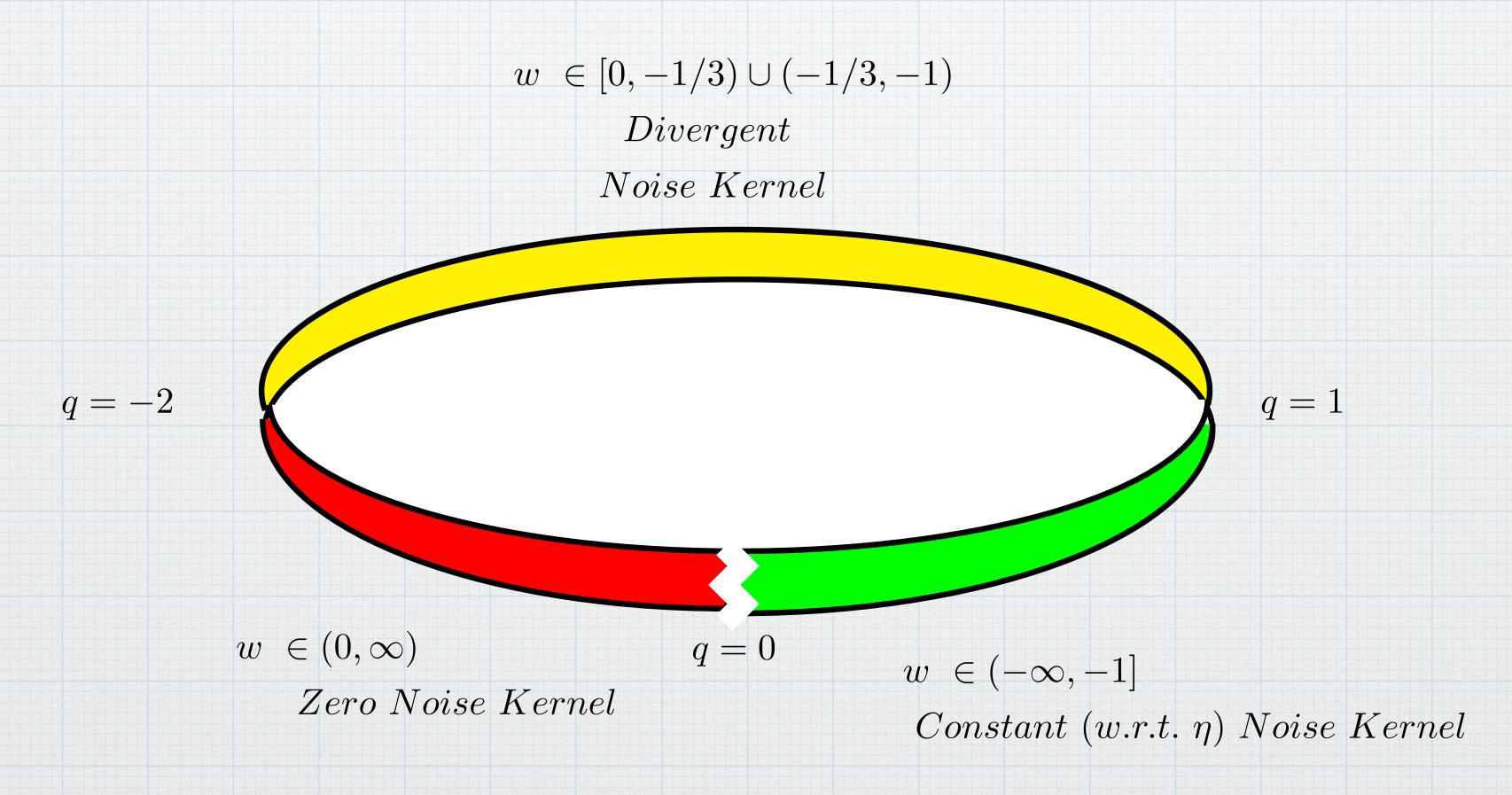
$$\lim_{\eta \to \infty} (H\eta)^{4q-4} \left[\frac{3H^4\eta^4}{2\pi^4(\Delta\vec{x})^8} + \frac{\eta^2 H^4(3q+4q^2)}{8\pi^4(\Delta\vec{x})^6} \right] + \frac{H^4q}{64\pi^4(\Delta\vec{x})^4} \left((-4-7q+6q^2+11q^3) + 2(1+q)(-1+q)^2 \left[2\gamma + \log\left(\frac{(\Delta\vec{x})^2}{4\eta^2}\right) + \psi^{(0)}(1-q) + \psi^{(0)}(2+q) \right] \right) + O(\eta^{-2}) \right]$$

$$\lim_{\eta \to \infty} \lim_{\epsilon \to 0} H^{-12} \left[\frac{3H^4}{2\pi^4 \eta^8 (\Delta \vec{x})^8} + \frac{4}{(\Delta \vec{x})^6 \eta^{10}} \left(\frac{5H^4}{16\pi^4} + O(\epsilon) \right) \right. \\ \left. + \frac{1}{\eta^{12} (\Delta \vec{x})^4} \left(\frac{9H^4}{16\pi^4 \epsilon} \right) + \frac{9(6H^4 + H^4 log(\frac{(\Delta \vec{x})^2}{4\eta^2}))}{16\pi^4} + O(\epsilon) \right) \right]$$

$$+\frac{1}{4(\Delta\vec{x})^{2}\eta^{14}}\left(-\frac{27H^{4}}{8\pi^{4}\epsilon}\right)\frac{27(7H^{4}+2H^{4}log(\frac{(\Delta\vec{x})^{2}}{4\eta^{2}}))}{16\pi^{4}}+O(\epsilon)\right) +\frac{1}{16\eta^{16}}\left(\frac{81H^{4}}{8\pi^{4}\epsilon^{2}}\right) +\frac{27H^{4}(10+3log(\frac{(\Delta\vec{x})^{2}}{4\eta^{2}})))}{4\pi^{4}\epsilon}+O(\epsilon^{0})\right) +O(\eta^{-18})$$

Back reaction cart wheel

* Scalar Back reaction: Some epochs are susceptible to strong back reaction



Dhanuka, KL; Phys. Rev. D (2020)

Massless field back reaction growth FRW catalogue

* Scalar

Dhanuka, KL; Phys. Rev. D (2020)

* Spinor

Dhanuka; Phys. Rev. D (2022)

* Vector

Conformally flat in 3+1, flat space correlation

* Tensor

KL; GRG (2022)

* Facilitated by uncontrolled growth of correlators

Quantum Gravitons: a la Unruh PeWitt Petector Route

* Hydrogen atom perturbed by curvature

$$(i\frac{\partial}{\partial t} - m)\psi = (-\frac{1}{2m}\nabla^2 - \frac{e^2}{r} + \frac{1}{2}mR_{0/0m}x^{\prime}x^m)\psi$$

Parker; Phys. Rev. Lett. (1980)

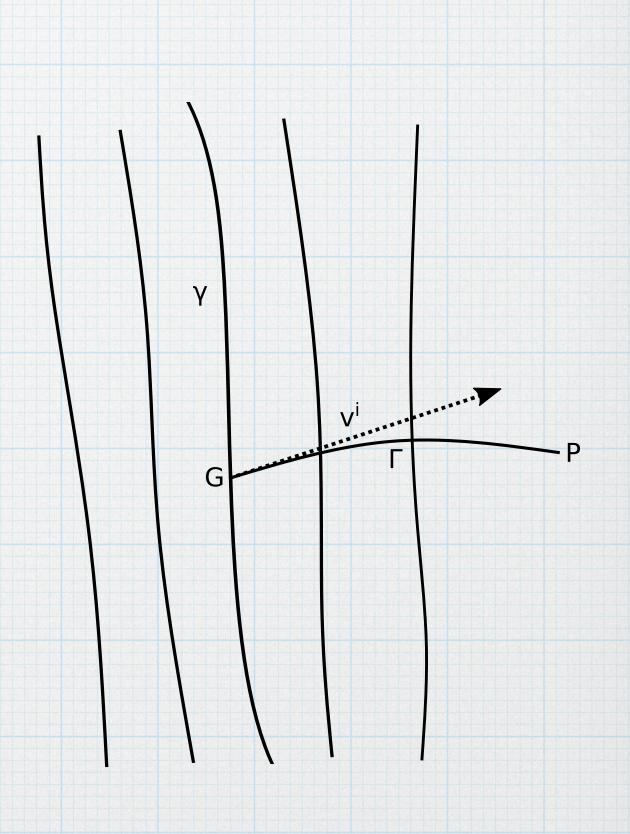
Pimentel, Parker; Phys. Rev. D (1982)

* Specialize to perturbed Friedmann universe

$$H_{I} = \frac{m}{2} \Big(-\delta_{lm} \frac{\ddot{a}}{a} - \frac{\dot{a}}{a} \dot{h}_{lm} - \frac{1}{2} \ddot{h}_{lm} \Big) x^{l} x^{m} = \frac{m}{2} H_{lm} x^{l} x^{m}$$

Dhanuka, KL; Phys. Rev. D (2022) Dhanuka, KL; arXiv: 2212.09784

x^2, y^2, xy, yx		xz, yz		z^2	
Δl	Δm	Δl	Δm	Δl	Δm
-2,0,2	-2,0,2	-2,0,2	-1,1	-2,0,2	0



Graviton mediated transition

$$\lim_{\vec{y}_1 \to \vec{y}_2} \langle 0 | \hat{H}_{ij}(\vec{y}_1, \eta_1) \hat{H}_{pk}(\vec{y}_2, \eta_2) | 0 \rangle = \lim_{\vec{y}_1 \to \vec{y}_2} \frac{1}{a_1^4} \left(\frac{a_1 a_1'}{2} \frac{\partial}{\partial \eta_1} - \frac{a_1^2}{2} \nabla_{\vec{y}_1}^2 \right) \frac{1}{a_2^4} \left(\frac{a_2 a_2'}{2} \frac{\partial}{\partial \eta_2} - \frac{a_2^2}{2} \nabla_{\vec{y}_2}^2 \right) \underbrace{\langle 0 | \hat{h}_{ij}(\vec{y}_1, \eta_1) \hat{h}_{pk}(\vec{y}_2, \eta_2) | 0 \rangle}_{G_{ijpk}}$$

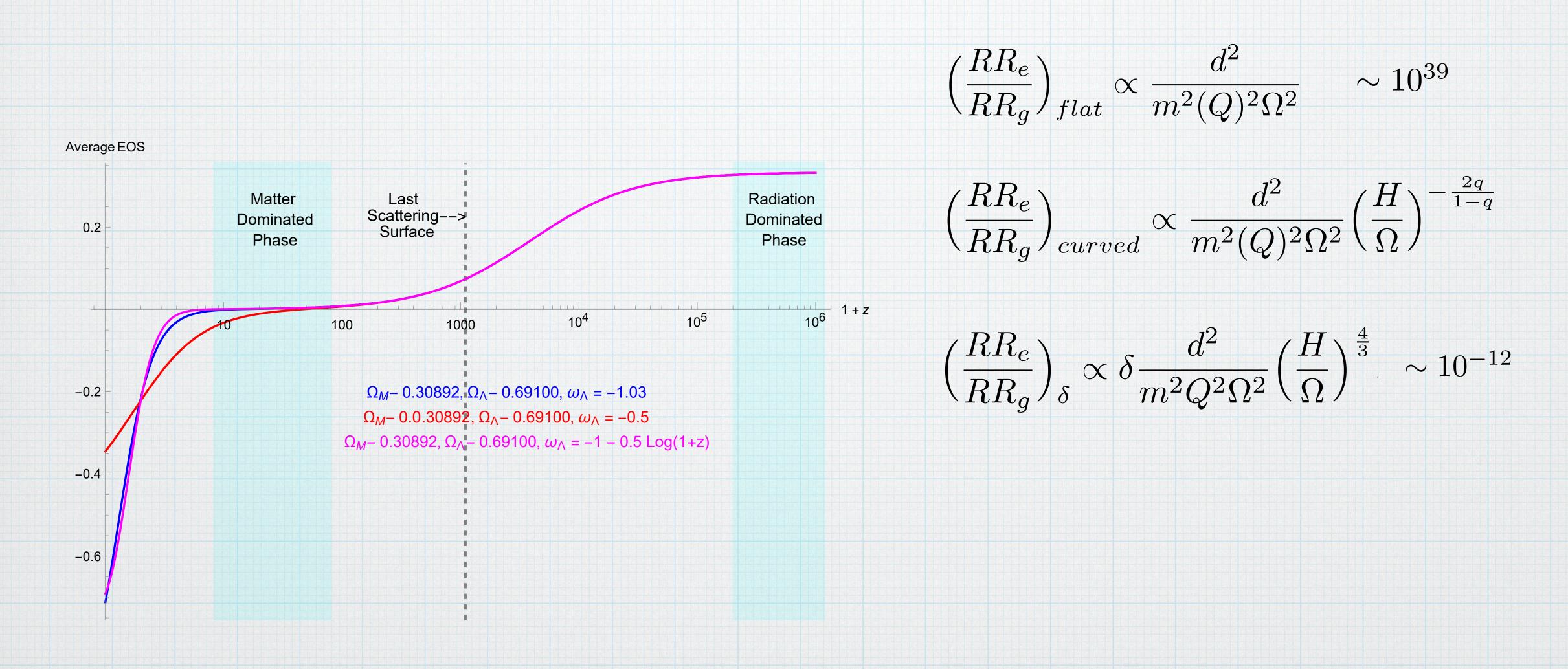
* Perivatively coupled UPP in matter dominated era

$$P_{\psi_{nlm} \to \psi_{n'l'm'}} = \frac{m^2}{4} \langle \psi_{n'l'm'} | \hat{x}^i \hat{x}^j | \psi_{nlm} \rangle^* \langle \psi_{n'l'm'} | \hat{x}^p \hat{x}^k | \psi_{nlm} \rangle \lim_{\vec{y}_1 \to \vec{y}_2} \int_{\eta_i}^{\eta_f} d\eta_1 \int_{\eta_i}^{\eta_f} d\eta_2 e^{-i\Omega(t(\eta_1) - t(\eta_2))}$$

$$\frac{1}{a_1^3} \left(\frac{a_1 a_1'}{2} \frac{\partial}{\partial \eta_1} \right) \frac{1}{a_2^3} \left(\frac{a_2 a_2'}{2} \frac{\partial}{\partial \eta_2} \right) \left(\delta_{ip} \delta_{jk} + \delta_{ik} \delta_{jp} - \delta_{ij} \delta_{pk} \right) (H^2 \eta_1 \eta_2)^{-3 + \delta} \frac{H^2}{32\pi^2 \delta} + \text{Subdominant terms.}$$

* EM transitions are distinct and relatively suppressed

Quantum Gravity at doorstep?



* Singular time in history when gravitons beat photons

Other hints of late time quantum revival

* Quantum Cosmology Spill Over

Sahota, KL; EPJC (2024)

* Quantum Gravity

Alexandre, Magueijo; Phys. Rev. D (2022)

* Bouncing/Collapsing dual

Mukherjee, Jassal, KL; EPJC(2024)

Take home

- * Classical Appearance of the universe is perplexing!
- * Inflation tried preserves quantum seed. Hands it over to following phases
- * Radiation dominated epoch: Sympathetic towards heading to classical
- * Matter dominated to matter driven era: Quantum revival possible
- * Late time epoch may not be as innocent as we would have thought it to be!

Thank You!