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Introduction (1/2)

• Dark matter (DM) interacts weakly with Standard Model particles, making direct
detection difficult.

• Current underground detectors like XENONnT, LUX-ZEPLIN, DarkSide-20k,
PandaX measure recoil energy of DM-electron/nucleus scattering, limited by the low
velocity of cold DM (∼ 220 km/s).

• Low DM velocity restricts detectable recoil energy in experiments.

• Stringent detection limits exist for DM masses > 100 MeV, but sensitivity drops for
lighter DM particles.

• Light DM particles with relativistic velocity (boosted DM) can provide higher recoil
energy, making detection feasible in existing experiments.
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Introduction (2/2)

• Possible sources of BDM:

1. Interaction with cosmic rays (CR) or high energy neutrinos
[Xia et al., 2022, Jho et al., 2021]

2. Evaporation from Primordial Black Holes (PBH)
[Chao et al., 2021]

3. DSNB and Blazar BDM
[Das et al., 2024, Granelli et al., 2022]

4. Annihilation of the heavy (dominant) DM in the galactic halo at present time -
Two Component DM [Basu et al., 2023, Li et al., 2023, Agashe et al., 2014]

• Two Component Boosted Dark Matter Model : Annihilation of the dominant
DM species A produces the boosted dark matter B. AA → BB

• In this work ([Kumar and Lekshmi, 2024]-communicated to PRD), we study the
BDM’s kinetic energy attenuation due to nuclear and electron collision for two cases;
high boost (≥ O(102)) and moderate boost (≤ O(102)).
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Galactic Flux of Boosted Dark Matter (1/2)

• We adopt a model independent analysis of two component dark matter scenario.

• Boost can be expressed as :

γ =
1√

1− v2B

∼ mA

mB
(1)

• The differential flux of the boosted dark matter B from the galactic centre is
[Agashe et al., 2014],

dϕ

dΩ dTB
=

1

4

rSun
4π

(
ρlocal
mA

)2

J ⟨σAA→BB v⟩dNB

dTB
, (2)
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Galactic Flux of Boosted Dak Matter (2/2)
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Figure: Differential flux of the boosted dark
matter as a function of its kinetic energy (TB)
at different width (σ) of the normal
distribution.

• σAA→BB = 1× 10−26cm2

• The differential energy spectrum is
expressed as,

dNB

dTB
= 2 δ(TB −mA) (3)
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Attenuation of Boosted Dark Matter

• The rate of change of the kinetic energy of the boosted dark matter (B) with respect
to the distance z is

dTB

dz
= −

∑
i

ni

∫ Tmax
i

0

dσBi
dTi

TidTi , (4)

where,
i = e,N for electron or nucleus species respectively.
ni = number densities.
We assume one-dimensional collision approximation.

• The differential cross section for DM-electron/nucleon collision is expressed as

dσBi
dTi

=
σBi

Tmax
i (TB)

(5)

• The maximal recoil energy of the the electron or the nucleon is found to be

Tmax
i (TB) =

[
1 +

(mi −mB)
2

2mi (TB + 2mB)

]−1

TB . (6)
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Nuclear Scattering: Form Factor = 1 (1/2)

• The spin independent part of the DM-Nucleus cross section, σBN , is related to the
atomic number (A) and DM-nucleon cross section, σBn, as

σBN(q
2) =

µ2
N

µ2
n

A2σBnF
2(q2) (7)

• Since the dominant chemical component of earth’s crust is Oxygen, mN ≈ 15 GeV,
we consider the case where mB ,TB << mN . In this limit we can write,

dTB

dz
= − 1

ℓ(TB)

(
TB +

T 2
B

2mB

)
. (8)

• Here ℓ is the mean free path for energy loss, given by,

1

ℓ(TB)
= 2mB

∑
N

gN(TB)nNσBN/mN (9)
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Nuclear Scattering: Form Factor = 1 (2/2)

• The factor gN is calculated by integrating the following quantity that involves the
nuclear form factor as

gN(TB) =

∫ Tmax
N

0
F 2
N(q

2)
2TN

(Tmax
N )2

dTN . (10)

• gN → 1 when FN(q
2) → 1.

• The analytical solution for the kinetic energy of the boosted dark matter at a
distance z is,

TB(z) =
TB(0)e

−z/ℓ

1 + TB(0)
2mB

(
1− e−z/ℓ

) . (11)
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Nuclear Scattering: Form Factor ̸= 1

• For the heavier nuclei, Helm form factor takes the following form:

F (q2) =
3j1(qR1)

qR1
e−

1
2
q2s2 (12)

where j1(x) is the spherical Bessel function of the first kind

• The Helm form factor can be approximated as a Gaussian form factor,

FN(q
2) ≈ e−q2/Λ2

N (for qR1 < ζ1), (13)

• The flux of the BDM in terms of the attenuated kinetic energy is expressed as,

dϕ

dTB

∣∣∣∣
z

=
4m2

Be
z/ℓ(

2mB + TB − TBez/ℓ
)2 dϕ

dTB

∣∣∣∣
z=0

. (14)
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Nuclear Scattering Plots
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Figure: (Left) K.E of BDM as a function of z is shown for different initial values of the K.E. The gray
vertical line shows z = 1.4 km for the XENON experiment. (Right) Initial flux (Green) and attenuated
flux (Red) at z = 1.4 km with form factor (F 2

N(q
2) ̸= 1) for TB = mA = 1000MeV and mB = 10MeV .
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Scattering with electrons

• The analytical solution for attenuated kinetic energy for electron scattering is the
same as the nuclear scattering case (without form factor).

σ
Be

= 3×10
-28

cm
2

σ Be = 3×10
-29
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2

σ
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Figure: (Left) Attenuation of K.E for BDM-electron scattering mB = 10 MeV. (Right) Initial flux (Green)
and attenuated flux (Red) at z = 1.4 km in electron scattering case. σBe = 3× 10−31 cm2.
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Conclusion (1/3)

χ-N scattering: F≠1

χ-N scattering: F=1

χ-e scattering
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Attenuated Flux for χ-N scattering: F≠1
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Figure: (Left) K.E of BDM as a function of z is shown for DM-nucleus scattering (with and without form
factor) and DM-electron scattering. mB = 10 MeV. σBn = σBe = 3× 10−29 cm2. (Right) Initial flux
(Green) and attenuated flux due to scattering with the nucleus (Purple) and electron (Red) scattering.
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Conclusion (2/3)
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Figure: Shift in the K.E after attenuation at z = 1.4 km as a function of mB . We have assumed the initial
K.E to be 100 MeV and σBn = σBe = 3× 10−29 cm2.
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Conclusion (3/3)

• The kinetic energy of boosted dark matter (BDM) is attenuated as it travels through
the Earth’s crust, leading to a shift in the peak position of the BDM flux. This must
be accounted for when interpreting direct detection results.

• Attenuation is highly sensitive to the masses of dark matter species, scattering
cross-sections, and nuclear form factors.

• Attenuation due to BDM-electron scattering is generally stronger than BDM-nucleus
scattering for MeV-scale BDM, especially for larger scattering cross-sections
(σ ≥ 3× 10−29 cm2).

• For kinetic energy > 1 GeV, inelastic scattering mechanisms may dominate and
should be included in future studies for more accurate attenuation predictions.

• Considering attenuation is crucial for accurate bounds on dark matter properties
from experiments like XENONnT and LUX-ZEPLIN, as the observed BDM flux peak
might not directly correspond to the dominant DM mass.
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Thank You
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Plots

Attenuated Flux for mB = 1 MeV
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Attenuated Flux for mB = 1 MeV
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Figure: Electron and nuclear scattering case for mA=10 MeV. σBe=3× 10−31 cm2 and σBn=3× 10−28 cm2
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